Home > News > Nanotube Circuits Made Practical
June 14th, 2007
Nanotube Circuits Made Practical
Abstract:
Many experts believe that carbon nanotubes could eventually replace silicon in microelectronics because of their potential for superior speed and reduced power consumption. And over the past several years, researchers have made transistors out of carbon nanotubes. However, it's still difficult to make reliable circuits out of them. One problem is that the nanotubes, used for transistors that make up the circuits, tend to be fabricated in different directions, making it impossible to know which nanotube form which transistor. And such a chaotic arrangement can lead to electrical malfunctions. But now researchers at Stanford University have written a program that finds a working circuit layout, no matter how disorganized or misaligned the nanotubes.
Source:
technologyreview.com
Related News Press |
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||