Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Technique creates metal memory and could lead to vanishing dents

Abstract:
Crumpled kitchen foil that lays flat for reuse. Bent bumpers that straighten overnight. Dents in car doors that disappear when heated with a hairdryer. These and other physical feats may become possible with a technique to make memory metals discovered by researchers at the University of Illinois.

Technique creates metal memory and could lead to vanishing dents

CHAMPAIGN, IL | Posted on March 29th, 2007

Normally, when a piece of metal - such as a paperclip - is bent, the change in shape becomes permanent. But, when heat is added to bent metal films having the right microstructure, the researchers found, the films return to their original shapes. The higher the temperature, the sooner the metal films revert. "It's as though the metal has a memory of where it came from," said Taher A. Saif, a professor of mechanical science and engineering at Illinois, and senior author of a paper that describes the findings in the March 30 issue of the journal Science.

In the study, Saif and graduate students Jagannathan Rajagopalan and Jong H. Han explored aluminum films and gold films. The aluminum films were 200 nanometers thick, 50-60 microns wide and 300-360 microns long. The gold films were 200 nanometers thick, 12-20 microns wide and 185 microns long. The average grain size in the aluminum films was 65 nanometers; in the gold films, 50 nanometers.

"We found that the type of metal doesn't matter, said Saif, who also is a Willett Faculty Scholar and a researcher at the university's Micro and Nanotechnology Laboratory. "What matters is the size of the grains in the metal's crystalline microstructure, and a distribution in the size."

Grain sizes are typically one-third to one-half the thickness of a metal film. Raising the temperature by about 50 degrees Celsius causes the grains to grow larger.

If the grains are uniformly too small, the metal will be brittle and break while being bent. If the grains are uniformly too large, the metal will bend, but then stay in that position. To return to the initial shape, what's needed is a balance between brittleness and malleability.

That balance can be achieved through a combination of small and large grains, the researchers report.

Variations in the microstructure lead to plastic deformation in the larger grains and elastic accommodations in the smaller grains, Saif said. The bigger grains bend, but push and pull on the smaller grains, which become elastically deformed like a spring.

If the metal is then left alone, the smaller grains will release this energy and force the bigger grains back to their original shapes over time. This local release of energy can be speeded up by applying heat.

Controlling the crystalline microstructure of thin films also could reduce energy loss in oscillators and resonators used in electronic circuits, Saif said. Oscillators and resonators are found in products ranging from air bag sensors and camcorders to digital projectors and global positioning systems.

"If the grains that constitute the metal films in these devices are between 50 and 100 nanometers, they can be very lossy," Saif said. "However, if we decrease the grain size, we can reduce much of the energy loss."

The work was funded by the National Science Foundation.

####

For more information, please click here

Contacts:
James E. Kloeppel

217-244-1073

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Automotive/Transportation

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Human Interest/Art

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Drawing data in nanometer scale September 30th, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project