Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoengineering research at UH a magnet for defense department grant

Abstract:
Whether you're a soldier navigating a minefield or a doctor examining a tumor, how well you know the territory can make all the difference in the outcome.

Nanoengineering research at UH a magnet for defense department grant

HOUSTON, TX | Posted on February 5th, 2007

That's why military and medical personnel increasingly rely on magnetic field sensors to help map their respective terrains - and why the U.S. Department of Defense (DOD) has awarded a University of Houston researcher and his team a grant worth up to $1.6 million to build the most powerful magnetic field sensor to date.

Stanko Brankovic, an assistant professor of electrical and computer engineering with the Cullen College of Engineering at UH, and co-principle investigator Paul Ruchhoeft, also a UH assistant professor of electrical and computer engineering, will use the grant to create a new type of magnetic field sensor that, if successful, will be hundreds - perhaps thousands - of times more sensitive than anything currently available.

On the military front, hundreds of thousands or more of these sensors could be the key components in a low-cost system that maps minefields quickly and accurately. In the medical arena, the sensors could be applied to magnetic resonance imaging, yielding highly detailed images of, for example, a tumor or an injured knee.

The funding for the project, "Single Ferromagnetic Nanocontact-Based Devices as Magnetic Field Sensors," will be delivered in two stages. The first stage, valued at $100,000 for one year, requires a proof of concept, in which Brankovic and Ruchhoeft must construct a working sensor. To do this, they will utilize new ideas in the nanoengineering of novel materials and the development of nanofabrication processes for devices smaller than 10 nanometers.

Should they succeed, the DOD will consider awarding them an extra $1.5 million to complete an entire system that incorporates multiple sensors, data-transmission equipment, and equipment and software that translate data into an easily understandable format.

The team's sensors will be based upon the phenomenon known as "ballistic magnetoresistance," which is the effect of a magnetic field on the ability of electrons to flow between magnetic electrodes through a nanocontact - a tiny wire measuring billionths of a meter that forms naturally between magnetic electrodes.

If the two electrodes' magnetic orientations (the direction in which a material's magnetism pushes or pulls) are different, some of the electrons flowing between them will be repelled by the spot in the nanocontact where the two different magnetizations meet, Brankovic said.

"When exposed to a magnetic field, however, the resulting change in magnetic orientation of the electrodes affects electrons' ability to travel through the nanocontact," he said. "Depending on the size and material of the nanocontact and magnetization of the electrodes, the electrons will flow through either more or less easily."

This change can be measured by simple tools such as a voltmeter. On the bulk scale, magnetoresistance - the change in electrical resistance of a conductor when a magnetic field is applied - is only one factor in determining how easily electrons travel between electrodes. On the nanoscale, in which these magnetic field sensors will be constructed, magnetoresistance is the only cause of fluctuation in the flow of electrons.

The heart of Brankovic's system will consist of two magnetic electrodes, connected by a very small magnetic nanocontact. When exposed to a magnetic field, the flow of electrons through the nanocontact will change, yielding a measurable result.

Exactly how magnetoresistance works on this scale is unknown and will be one of the subjects of Brankovic's research. Two of the main theories to explain the phenomenon - both of which are supported by limited physical evidence - are incompatible. Brankovic has developed his own hypothesis that, if correct, would account for both sets of evidence.

"In my hypothesis, the nanocontact connecting the two electrodes is composed of non-conductive metal oxide that has metal channels that act as conductive pathways for electrons," Brankovic said. "When exposed to a magnetic field, some, but not all, of the channels of conductive material are altered either by the magnetic domain wall or by magnetostriction - the phenomena of a material's shape changing slightly when exposed to a magnetic field. Either of these explanations would result in a small but measurable change in the flow of electrons."

Whether this supposition proves correct or magnetic resistance on the nanoscale works in some other manner, Brankovic's goal will remain the same: to build a first-of-its kind magnetic field sensor that is far more powerful than any other sensor to date. If he succeeds, his invention will create a fundamental change in the arena of magnetic field detection.

####

About University of Houston
The University of Houston, Texas’ premier metropolitan research and teaching institution, is home to more than 40 research centers and institutes and sponsors more than 300 partnerships with corporate, civic and governmental entities. UH, the most diverse research university in the country, stands at the forefront of education, research and service with more than 35,000 students.

About the Cullen College of Engineering
UH Cullen College of Engineering has produced five U.S. astronauts, ten members of the National Academy of Engineering, and degree programs that have ranked in the top ten nationally. With more than 2,600 students, the college offers accredited undergraduate and graduate degrees in biomedical, chemical, civil and environmental, electrical and computer, industrial, and mechanical engineering. It also offers specialized programs in aerospace, materials, petroleum engineering and telecommunications.

For more information about UH, visit the university’s Newsroom at http://www.uh.edu/newsroom .

To receive UH science news via e-mail, visit www.uh.edu/admin/media/sciencelist.html .

For more information, please click here

Contacts:
Lisa Merkl
University of Houston
External Communication
713/743-8192 (office)
713/605-1757 (pager)

Copyright © University of Houston

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Sensors

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Human Interest/Art

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Drawing data in nanometer scale September 30th, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project