Home > News > Breakthrough in Semiconductor Spin Wave Research
May 4th, 2006
Breakthrough in Semiconductor Spin Wave Research
Abstract:
UCLA Engineering adjunct professor Mary Mehrnoosh Eshaghian-Wilner, researcher Alexander Khitun and professor Kang Wang have created three novel nanoscale computational architectures using a technology they pioneered called "spin-wave buses" as the mechanism for interconnection. The three nanoscale architectures are not only power efficient, but also possess a high degree of interconnectivity.
In contrast to traditional information processing technology devices that simply move electric charges around while ignoring the extra spin that tags along for the ride, spin-wave buses put the extra motion to work transferring data or power between computer components. Information is encoded directly into the phase of the spin waves. Unlike a point-to-point connection, a "bus" can logically connect several peripherals. The result is a reduction in power consumption, less heat and, ultimately, the ability to make components much smaller as no physical wires are actually used to send the data.
Source:
linuxelectrons.com
Related News Press |
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||