Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Hard Shell – Soft Core

Abstract:
Polymeric microspheres have a shell whose density is dependent on the temperature

Hard Shell – Soft Core

Posted on March 01, 2006

Nanoparticles whose outer shells and inner cores are made of different materials are useful for many industrial and biomedical applications. In order for nanoparticles to be used as sensors or for the controlled release of substances held within their shell, for example, an important requirement must be met: the shell must be more dense than the core to form a barrier for the external medium.

W. Richtering and I. Berndt in Aachen, in collaboration with J.S. Pedersen in Århus, Denmark, have now found an elegant solution to this problem. In a two-step process, they synthesized polymeric microspheres with a core made of poly-N-isopropylacrylamide and a shell of poly-N-isopropylmethacrylamide. Both polymers are known for a particular characteristic: they swell in water, forming microgels. Because of the different polymer building blocks used in the shell and core, these differ in the absorption of water.

At 70 °C, the temperature at which the microspheres are synthesized, both polymers are densely packed. They cannot take up much water and thus no substances dissolved in the water either. When they are cooled to 25 °C, the core and shell have the highest water content and the lowest density. Dissolved molecules can pass through the shell into the core, where they disperse. Things get especially interesting when the temperature is raised to 39 °C: at this temperature, only the swelling properties of the shell are changed. It expels water, shrinks together, and becomes denser than the core. Substances dissolved in the core can no longer pass through the shell and are now locked inside. Aside from their sensitivity to temperature, polymeric microgels with core–shell architectures have another advantage too. Selection of the basic components and the reaction conditions also allow other properties of the polymers to be controlled. In addition, the synthesis of particles with multiple shells is also a possibility; these could separate different reaction chambers within the particle. The possible applications are many and varied.

####


Author: Walter Richtering, RWTH Aachen (Germany), www.ipc.rwth-aachen.de/richtering/index.html

Title: Temperature-Sensitive Core–Shell Microgel Particles with Dense Shell

Angewandte Chemie International Edition, 2006, 45, 1737, doi: 10.1002/anie.200503888

Contact:
Editorial office:
angewandte@wiley-vch.de

or David Greenberg (US)
dgreenbe@wiley.com

or Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Sensors

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Materials/Metamaterials/Magnetoresistance

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project