Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Military Nanotech Spending Proves Difficult to Tap

Abstract:
U.S. Department of Defense has funded $195 million in small business nanotech grants since 2002, but only 6% made it past a first phase

Military Nanotech Spending Proves Difficult to Tap

Lux Research

New York, NY | Posted on February 27, 2006

With threats to the U.S. increasingly coming from terrorist organizations, rogue nations, and insurgencies, the military is driving a major effort to improve its capabilities – making it one of the best prospective buyers for applications of nanotechnology. But companies large and small that supply these nanotech solutions are failing to exploit the military market effectively because of mismatched development strategies, according to a new report from Lux Research entitled “Setting Supplier Strategies for Military Nanotech Applications.”

“Despite military and defense buyers’ deep pockets, diverse needs, and risk-friendly profile, many perils make selling to these clients tough going,” said Lux Research Senior Analyst Mark Bünger, author of the report. “When we examined the fate of suppliers that applied for the 809 small business grants from the Department of Defense, we found that long lead times, IP issues, and an inability to scale up make success hard to achieve.”

To assess military nanotech opportunities for commercial organizations, Lux Research identified 809 Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) grants totaling $195 million that were issued by the Department of Defense for nanotechnology applications. The grants were categorized in seven application domains: propellants and explosives, biomedical, sensors, electronics, power, structural materials and surfaces, and coatings and filters. In addition, Lux Research constructed an evaluation tool to assess 46 applications across the seven domains on price/performance, military priority, and commercial potential. Among the report’s highlights:

  • Nanotech applications in electronics, power, surfaces, coatings, and filters are good candidates for military and commercial co-development. They both meet high-priority military challenges and address large, near-term commercial markets.
  • Biomedical applications have stronger commercial opportunities then military ones, though military demand in many cases offer support for early-stage development.
  • Sensor and structural materials applications are unlikely to break out of a military niche – because military buyers value their performance enhancements enough to support higher costs, where most commercial entities do not.
  • Propellants and explosives applications fall by the wayside, lacking major commercial interest and ranking relatively low on military priority.

Suppliers of nanotechnology-driven solutions will need new approaches to make the military and defense market work for them. “Today, small suppliers seek SBIR grants for narrowly-defined components of larger systems that the military needs, and small and large suppliers both turn to systems integrators to incorporate their inventions into complete solutions,” said Bünger. “Suppliers should recognize the inherent risks in both paths and take appropriate steps to mitigate them – by focusing on commercial co-development early and avoiding over-reliance on military sources of revenue.”

“Setting Supplier Strategies for Military Nanotech Applications” contains analysis of a comprehensive set of Department of Defense SBIR and STTR grants from 1988 by sector, grant phase, and deal size. It also presents data from interviews with 17 government officials, start-ups, and large corporations working with the Department of Defense. The report and its underlying data set are available immediately to clients of Lux Research’s Nanotechnology Strategies advisory service. For information on how to become a client, contact Rob Burns, Vice President of Sales, at (646) 723-0708.

####

About Lux Research:
Lux Research is the world’s leading nanotechnology research and advisory firm. We help our clients make better decisions to profit from nanoscale science and technology, tapping into our analysts’ unique expertise and unrivaled network. Our clients include top decision makers at large corporations, portfolio managers and analysts at leading financial institutions, CEOs of the most innovative start-ups, and visionary public policy makers.

For more information, please click here.

Contact:
Lux Research Inc.
Peter Hebert
646-723-0702
peter.hebert@luxresearchinc.com

Copyright © Lux Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Investments/IPO's/Splits

Daikin Industries becomes OCSiAl shareholder July 27th, 2021

180 Degree Capital Corp. Reports +14.2% Growth in Q1 2021, $10.60 Net Asset Value Per Share as of March 31, 2021, and Developments From Q2 2021 May 11th, 2021

INBRAIN Neuroelectronics raises over €14M to develop smart graphene-based neural implants for personalised therapies in brain disorders March 26th, 2021

180 Degree Capital Corp. Issues Second Open Letter to the Board and Shareholders of Enzo Biochem, Inc. March 26th, 2021

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project