Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Smaller Quantum Dots Improve In Vivo Imaging

February 23rd, 2006

Smaller Quantum Dots Improve In Vivo Imaging

Abstract:
Reporting its work in the Journal of the American Chemical Society, a team of investigators led by Moungi Bawendi, Ph.D., of the Massachusetts Institute of Technology, describes its efforts to create a new type of quantum dot that absorbs near-infrared light. This portion of the spectrum is not absorbed by water or biomolecules, and thus, can pass a significant distance through skin. The fruits of the group’s labors is a family of quantum dots that have a core of indium selenide surrounded by a shell of zinc sulfide. The core is further coated with dihydrolipoic acid connected to a short length of poly(ethylene glycol). The dihydrolipoic acid helps the quantum dots mix easily with water, while the poly(ethylene glycol) prevents proteins in blood and serum from sticking to the quantum dots.

Source:
nano.cancer.gov

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Massachusetts Institute of Technology

Related News Press

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project