Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanotech research dominates UH contest

Abstract:
Three Students Take Top Honors in Student Superconductivity Symposium

From communications to biosensors, nanotech research dominates UH contest

Houston, TX | Posted on January 23, 2006

Fostering multidisciplinary research with projects ranging from those that impact the communications field to improving the fabrication of integrated circuitry used in data storage and biosensors, the 30th Semiannual Texas Center for Superconductivity at the University of Houston (TcSUH) Student Symposium recently showcased original research from UH science and engineering students.

Three students won top honors, including two from the College of Natural Sciences and Mathematics and one from the Cullen College of Engineering. First place went to Jason Shulman, a doctoral student in physics; second place went to Barry Craver, a doctoral student in electrical engineering; and third place went to Girish Nathan, a doctoral student in physics. Competitors gave 15-minute research presentations, followed by a brief question-and-answer period. A faculty panel judged each presenter on originality and quality of research, quality of presentation and skillful use of visual aids.

“I have always been interested in science and, in particular, the fundamental laws of nature,” first-place winner Shulman said, whose project leader is UH Professor of Physics and T.L.L. Temple Chair of Science Paul C.W. Chu. “Physics was a natural choice for my field of study. My research focuses on the dielectric properties of nanosystems. We have observed several important features that only exist in the nanoscale. These novel properties have the potential to impact fields ranging from communications to charged carrier gases.”

In second place, Craver, whose project leaders are Professor of Electrical Engineering John Wolfe and Associate Professor of Electrical Engineering Dmitri Litvinov, said, “I am fascinated by the complexity of fabricating integrated circuitry at nanometer dimensions. Recently, we’ve developed atom beam lithography, which uses a beam of energetic atoms to print nanometer-sized features. With this new technique we will fabricate extremely small magnetic devices for applications in data storage and ultra-high sensitivity magnetic and biological sensors.”

Third-place winner Nathan, whose project leader is Professor and Associate Chairman of Physics Gemunu Gunaratne, is also a physics student.

“From the time I was a child, the patterns I observed held a certain fascination for me,” he said. “I remember wondering about how and why they were formed. A childhood dream has been realized in a sense, since I work on pattern formation and on trying to understand why patterns really form, which is where a lot of my scientific curiosity began.”

TcSUH is internationally recognized for its multidisciplinary research and development of high-temperature superconductors (HTS) and related materials. (See related release here.)

####
Media Contact:
Lisa Merkl
University of Houston
External Communication
713/743-8192 (office)
713/605-1757 (pager)
lkmerkl@uh.edu

Copyright © University of Houston

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Memory Technology

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project