Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Memory Design Breakthrough Can Lead to Faster Computers

January 12th, 2006

Memory Design Breakthrough Can Lead to Faster Computers

Abstract:
Imagine a computer that doesn't lose data even in a sudden power outage, or a coin-sized hard drive that could store 100 or more movies. Magnetic random-access memory, or MRAM, could make these possible, and would also offer numerous other advantages. It would, for instance, operate at much faster than the speed of ordinary memory but consume 99 percent less energy.

A team of researchers at The Johns Hopkins University, writing in the Jan. 13 issue of Physical Review Letters, has come up with one possible answer: tiny asymmetrical cobalt or nickel rings that can serve as memory cells. These "nanorings" can store a great quantity of information. They also are immune to the problem of "stray" magnetic fields, which are fields that "leak" from other kinds of magnets and can thus interfere with magnets next to them.

Source:
Johns Hopkins University

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Memory Technology

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project