Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > How to Braid Nanoropes

Abstract:
Max Planck scientists identify essential control parameters for the assembly of filament bundles

How to Braid Nanoropes

October 14, 2005

Biomimetic systems that are composed of rigid polymers or filaments and crosslinking molecules can be used to assemble filament networks and bundles. The bundles represent `nanoropes' and exhibit material properties that are primarily determined by the number of plaited filaments. Scientists at the Max Planck Institute of Colloids and Interfaces in Potsdam, Germany have now shown that this assembly of filaments into bundles is prevented by the thermal motion of the filaments, unless the crosslinker concentration exceeds a certain threshold value. The latter value depends on the number of filaments, but remains finite in the limit of a large filament number. As the crosslinker concentration is lowered, the bundles may segregate into small sub-bundles, or undergo abrupt unbinding transitions. (Physical Review Letters 95, 038102, July, 2005).

Max Planck Institute of Colloids and Interfaces - Nanoropes
Three snapshots of a bundle formed by twenty filaments as observed in computer simulations: (a) Loose bundle for a crosslinker concentration that is only slightly above the threshold value; (b) and (c) show two different conformations of the same bundle corresponding to a segregated conformation with three sub-bundles and a compact conformation with roughly cylindrical shape, respectively. Copyright © Max Planck Institute of Colloids and Interfaces

Click on image for larger version.

Biological cells are mechanically stable because they contain actin filaments and microtubules that form networks and bundles. These filament architectures are determined and controlled by crosslinking proteins, which have two sticky ends that bind to different filaments. In order to understand the underlying forces and to optimise the mechanical properties of these architectures, one must study biomimetic model systems that are solely composed of filaments and crosslinking proteins. One important example is the assembly of several filaments into thick bundles or ‘nanoropes’ that are more rigid, and sustain a larger external load, than single filaments.

The assembly of filaments by molecular crosslinkers is disturbed by the thermal motion of the filaments. Scientists at the Max Planck Institute of Colloids and Interfaces have now shown that this thermal motion prevents filament assembly unless the crosslinker concentration exceeds a certain threshold value. The latter value depends on the filament rigidity, on the binding energy of the crosslinkers, and on the temperature. Furthermore, the threshold value decreases as the number N of filaments within the bundle is increased, but remains finite in the limit of large N.

Snapshots of filament bundles as observed in computer simulations are displayed in Fig. 1. The snapshot in Figure 1(a) shows a loose bundle for a crosslinker concentration only slightly above the threshold value. The simulations also reveal that these bundles do not always reach their equilibrium shape, but often segregate into sub-bundles containing typically five filaments as shown in Figure 1(b). This bundle morphology differs strongly from the fully equilibrated bundle shape as shown in Figure 1(c) for the same system. Which of the two morphologies is attained depends on the initial arrangement of the filaments and on the kinetics of the assembly process.

Biomimetic systems, consisting of solutions of actin filaments and crosslinking proteins, have also been studied experimentally by several research groups. The available experimental data is consistent with the new theory based on the interplay of molecular crosslinkers and thermal motion. In particular, there is some experimental evidence for the threshold concentration of crosslinkers and the sudden onset of filament bundle formation above this concentration, but systematic experimental studies remain to be done that explore the dependence on the filament number N.

Apart from representing important structural elements, filament bundles can also provide strong pushing forces. These pushing forces arise from the directed growth of the filaments by the addition of molecular building blocks. One important problem is to understand the dependence of these pushing forces on the number of filaments within the bundle. This research topic is currently being pursued within the European network on 'Active Biomimetic Systems', see related link below.

Related links:
[1] European Funding for Research on Biomolecular Nanomachines

Original work:
Jan Kierfeld, Torsten Kühne, and Reinhard Lipowsky, "Discontinuous unbinding transitions of filament bundles" Physical Review Letters 95, 038102 (2005).

####


Contact:
Dr. Jan Kierfeld
Max Planck Institute of Colloids and Interfaces, Potsdam
Tel.: ++49 331 567-9620
Fax: ++49331 567-9602
jan.kierfeld@mpikg.mpg.de

Katja Schulze (Press and Public Relations)
Max Planck Institute of Colloids and Interfaces, Potsdam
Tel.: ++49 331-567-9203
Fax: ++49 331-567-9202
katja.schulze@mpikg.mpg.de

Copyright © Max Planck Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project