Home > Press > New Design Developed for Silicon Nanowire Transistors
Abstract:
Transistors are less sensitive to electronic "noise" in the channel and can be turned on and off more effectively
In an advance for nanoscale electronics, researchers at the National Institute of Standards and Technology (NIST) have demonstrated a new design for silicon nanowire transistors that both simplifies processing and allows the devices to be switched on and off more easily.
The NIST design, described in a paper published June 29 by the journal Nanotechnology,* uses a simplified type of contact between the nanowire channel and the positive and negative electrodes of the transistor. The design allows more electrical current to flow in and out of the silicon. The researchers believe the design is the first to demonstrate a "Schottky barrier" type contact for a nanowire transistor built using a "top-down" approach. This barrier, an easily formed metal contact that electrons can tunnel through, requires much less doping with impurities than do conventional ohmic contacts, thereby simplifying processing requirements. Schottky contacts also offer more resistance and restrict electrical flow to one direction when the transistor is off.
In the NIST transistor design, the 60-nanometer-wide channels exhibit a much greater difference in current between the on and off states than is true for larger reference channels up to 5 micrometers wide. This suggests that when a channel is scaled down to the nano regime, the ultra-narrow proportions significantly reduce the current leakage associated with defects in silicon. As a result, the transistors are less sensitive to electronic "noise" in the channel and can be turned on and off more effectively, according to the paper's lead author, Sang-Mo Koo, a NIST guest researcher.
Silicon nanowire devices have received considerable attention recently for possible use in integrated nanoscale electronics as well as for studying fundamental properties of structures and devices with very small dimensions. The NIST work overcomes some key difficulties in making reliable devices or test structures at nanoscale dimensions. The results also suggest that nanowire transistors made with conventional lithographic fabrication methods can improve performance in nanoscale electronics, while allowing industry to retain its existing silicon technology infrastructure.
*S.M. Koo, M.D. Edelstein, Q.Li, C.A. Richter and E.M. Vogel. 2005. Silicon nanowires as enhancement-mode Schottky barrier field-effect transistors. Nanotechnology 16. Posted online June 29.
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
Possible Futures
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||