Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > World's Longest Electrically Conducting Nanotubes

Abstract:
UC Irvine today announced that scientists at The Henry Samueli School of Engineering have synthesized the world's longest electrically conducting nanotubes. These 0.4 cm nanotubes are 10 times longer than previously created electrically conducting nanotubes. The breakthrough discovery may lead to the development of extremely strong, lightweight materials and ultradense nano-memory arrays for extremely powerful computers ...

UC Irvine scientists develop world’s longest electrically conducting nanotubes

Breakthrough discovery is 10 times longer than previous current-carrying nanotubes, paves way for supercomputer and health care applications

Irvine, CA. October 18, 2004

UC Irvine today announced that scientists at The Henry Samueli School of Engineering have synthesized the world’s longest electrically conducting nanotubes. These 0.4 cm nanotubes are 10 times longer than previously created electrically conducting nanotubes. The breakthrough discovery will lead to the development of extremely strong, lightweight materials and ultradense nano-memory arrays for extremely powerful computers, ultralow-loss power transmission lines, and nano-biosensors for use in health care applications.

A nanotube is commonly made from carbon and consists of a graphite sheet seamlessly wrapped into a cylinder only a few nanometers wide. A nanometer is one billionth of a meter, about the size of 10 atoms strung together.

Peter Burke, assistant professor of electrical engineering and computer science, conducted the research along with graduate students Shengdong Li, Christopher Rutherglen and Zhen Yu.

“We are extremely excited about this discovery,” said Burke. “Recently there have been several key advances around the world in synthesizing very long carbon nanotubes. Our research has taken a significant step forward by showing we can pass electricity through these long nanotubes. Significantly, we have found that our nanotubes have electrical properties superior to copper. This clearly shows for the first time that long nanotubes have outstanding electrical properties, just like short ones.”

Researchers grew the carbon nanotubes using a simple procedure: Burke allowed natural gas to react chemically with tiny iron particles or “nanoparticles” inside a small furnace. By placing a small amount of gold under the iron, Burke’s group found that ultralong nanotubes grow; whereas without the gold, only short nanotubes grow. Because nanotubes are so small, it is difficult to connect regular wires to them. Using gold in the growth process, Burke solved this problem by growing nanotubes that come out already attached to gold wires. An added scientific benefit is that Burke was able to accurately determine how the electrical resistance of a nanotube depends on its length. The relationship between resistance and physical size (length) is a key property of any new material. Burke’s finding indicates that the electrical conductivity is greater than for copper wires of the same size, a world record for any nano-material of this length.

The findings are reported in the September issue of Nano Letters, a peer-reviewed journal of the American Chemical Society, the world's largest scientific society.

The Army Research Office, the Office of Naval Research, the Defense Advanced Research Projects Agency, and the National Science Foundation provided funding for the research, which took place at UCI's Integrated Nanosystems Research Facility in The Henry Samueli School of Engineering.

About The Henry Samueli School of Engineering: The Henry Samueli School of Engineering numbers nearly 3,000 students and 95 faculty members across five academic departments: biomedical engineering, chemical engineering and materials science, civil and environmental engineering, electrical engineering and computer science, and mechanical and aerospace engineering. The school is home to numerous research centers, including the Center for Pervasive Communications and Computing, the Integrated Nanosystems Research Facility, the National Fuel Cell Research Center and the Center for Biomedical Engineering. It is a major participant in the California Institute for Telecommunications and Information Technology. For more information, please visit www.eng.uci.edu.

About the University of California, Irvine: The University of California, Irvine is a top-ranked public university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with approximately 24,000 undergraduate and graduate students and about 1,300 faculty members. The third-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3 billion.

Contact:

Lisa Briggs
lbriggs@uci.edu
(949) 824-3088

Copyright © UCI

If you have a comment, please us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Henry Samueli School of Engineering

Related News Press

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project