Home > News > Freeing nanodevices from the constraints of ATP
September 26th, 2004
Freeing nanodevices from the constraints of ATP
Abstract:
Engineers expect that tomorrow's nanomachines - biomolecular devices that might patrol cells, repair genes, scour out infections, and haul away debris - will be powered by nature's own motors: the proteins kinesin, myosin, and dynein, which turn adenosine triphosphate (ATP) into fuel and move loads along microtubular tracks of actin and tubulin.
It makes sense to use these off-the-shelf engines as they're 1,000 times smaller than anything humans can yet build. But recent research indicates that by the time bioengineers are ready to begin assembling their intracellular delivery vehicles, they will have a wider range of motors to choose from.
Source:
* the-scientist
Related News Press |
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Molecular Machines
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanotech scientists create world's smallest origami bird March 17th, 2021
Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |