Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Bruker Launches Advanced In-Situ Nanomechanical Test Instrument for Analyzing Materials Deformation in Electron Microscopes: Hysitron PI 89 SEM PicoIndenter Offers Unprecedented Range and Flexibility

Abstract:
The Bruker Nanomechanical Testing business today announced the release of the Hysitron PI 89 SEM PicoIndenter™ to provide nanomechanical testing capabilities inside a scanning electron microscope (SEM) at higher loads and in more extreme environments than previously possible. This benefits researchers’ understanding of the deformation mechanisms of high-strength materials. The new system combines Bruker’s high-performance controller with exclusive capacitive transducer and intrinsic displacement technologies to enable unmatched force and displacement ranges.

Bruker Launches Advanced In-Situ Nanomechanical Test Instrument for Analyzing Materials Deformation in Electron Microscopes: Hysitron PI 89 SEM PicoIndenter Offers Unprecedented Range and Flexibility

Minneapolis, MN | Posted on October 15th, 2020

The PI 89 SEM PicoIndenter is the first in-situ instrument with two rotation and tilt stage configurations. This enables flexible sample positioning toward the electron column for top-down imaging, tilting toward the FIB column for milling, spindle rotation for crystallographic alignment, and compatibility with a wide range of detectors to enable structure-property correlation of complex materials.



“The University of Alabama is excited to be the first recipient of Bruker’s Hysitron PI 89 SEM PicoIndenter in-situ nanomechanical testing unit,” said Dr. Gregory Thompson, Director of the Alabama Analytical Research Center. Professor of Mechanical Engineering Dr. Keivan Davami added, “The state-of-the-art capabilities of this platform to achieve extremes in temperature while simultaneously applying load will provide unprecedented structure characterization capture, including Transmission Kikuchi Diffraction and Electron Backscattered Diffraction, in support of multiple research programs.”



“The Hysitron PI 89 instrument is a compelling addition to our pioneering PicoIndenter Series for in-situ nanomechanical testing in electron microscopes,” stated Dr. Oden Warren, General Manager of Bruker’s Nanomechanical Testing business. “The new platform features superior versatility, ease of use, and stiffness to support higher loads, as well as several patented features to provide customers the widest range of testing flexibility and industry-leading performance in their SEMs. We are excited to see the new research this next-generation instrument makes possible.”



About the Hysitron PI 89 SEM PicoIndenter

The Hysitron PI 89 system is the latest generation of Bruker’s renowned family of Hysitron PicoIndenter test instruments for SEMs. Built upon Bruker's state-of-the-art capacitive transducer technology, PI 89 offers researchers an advanced instrument with powerful capabilities that delivers extraordinary performance and versatility. Its capabilities include automated nanoindentation, accelerated mechanical property mapping (XPM), fatigue testing, nanotribology, Push-to-Pull (PTP) tension for thin films and nanowires (patented), direct-pull tension, SPM imaging, an electrical characterization module, elevated temperature testing (patented), rotation and tilt stage (patented), and compatibility with analytical imaging using EBSD, EDS, CBD, TKD, and STEM detectors.

####

For more information, please click here

Contacts:
Stephen Hopkins

Content Marketing Manager

Bruker Nano Surfaces and Metrology Division

T: +1 (520) 741-1044 x1022

E:

Copyright © Bruker Corporation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New-Contracts/Sales/Customers

Bruker Light-Sheet Microscopes at Major Comprehensive Cancer Center: New Advanced Imaging Center Powered by Two MuVi and LCS SPIM Microscopes March 25th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Veeco Announces Aledia Order of 300mm MOCVD Equipment for microLED Displays: Propel™ Platform First 300mm System with EFEM Designed for Advanced Display Applications October 20th, 2020

GREENWAVES TECHNOLOGIES Announces Next Generation GAP9 Hearables Platform Using GLOBALFOUNDRIES 22FDX Solution October 16th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project