Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > DNA nanoswitches rapidly detect Sars-Cov-2 and other emerging viruses: Programmable low-cost DNA-based platform for viral RNA detection

Abstract:
Programmable DNA nanoswitches that bind to viral RNA in human body fluids may provide an inexpensive platform to rapidly detect a wide variety of emerging viruses, including SARS-CoV-2, according to a new study. This approach may make testing more manageable in resource-limited areas, since it does not require enzymes or significant laboratory infrastructure, only costs about 1 penny per reaction, and can be performed within hours. RNA viruses are often the culprits behind widespread outbreaks, since their high mutation rates enable them to evolve quickly. Detecting these emergent RNA viruses remains challenging, especially in impoverished areas, since detection time windows can be as short as just a few days and laboratories may not be equipped to conduct immunoglobulin blood tests, which remain standard for clinical testing but sometimes lead to false positive results. To help overcome these challenges, Zhou et al. developed DNA nanoswitches that bind to both ends of target viral RNAs, forming loop-shaped compounds.

DNA nanoswitches rapidly detect Sars-Cov-2 and other emerging viruses: Programmable low-cost DNA-based platform for viral RNA detection

Washington, DC | Posted on August 21st, 2020

These negatively-charged, RNA-containing nanoswitch loops are then placed in a gel and stimulated with an electrical current, pulling them towards a positive electrode on the other end of the gel. Since the nanoswitches move more slowly when they are bound to viral RNA, this gel electrophoresis technique reveals the virus' presence. The researchers first tested this approach with DNA nanoswitches designed to target a sequence in the Zika virus genome and demonstrated its ability to detect clinically-relevant levels of Zika RNA in human urine. Zhou et al. next developed nanoswitches to target SARS-CoV-2 RNA in human saliva, finding that they could successfully detect the virus' presence within about 2 hours. The nanoswitches also successfully differentiated between Zika virus and Dengue virus, which occur in overlapping geographical regions and cause similar symptoms, demonstrating the nanoswitches' potential to avoid misdiagnoses.

####

For more information, please click here

Contacts:
Lifeng Zhou


@AAAS

Copyright © American Association for the Advancement of Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project