Home > Press > UCLA computer scientists set benchmarks to optimize quantum computer performance
Abstract:
Two UCLA computer scientists have shown that existing compilers, which tell quantum computers how to use their circuits to execute quantum programs, inhibit the computers' ability to achieve optimal performance. Specifically, their research has revealed that improving quantum compilation design could help achieve computation speeds up to 45 times faster than currently demonstrated.
The computer scientists created a family of benchmark quantum circuits with known optimal depths or sizes. In computer design, the smaller the circuit depth, the faster a computation can be completed. Smaller circuits also imply more computation can be packed into the existing quantum computer. Quantum computer designers could use these benchmarks to improve design tools that could then find the best circuit design.
"We believe in the 'measure, then improve' methodology," said lead researcher Jason Cong, a Distinguished Chancellor's Professor of Computer Science at UCLA Samueli School of Engineering. "Now that we have revealed the large optimality gap, we are on the way to develop better quantum compilation tools, and we hope the entire quantum research community will as well."
Cong and graduate student Daniel (Bochen) Tan tested their benchmarks in four of the most used quantum compilation tools. A study detailing their research was published in IEEE Transactions on Computers, a peer-reviewed journal.
Tan and Cong have made the benchmarks, named QUEKO, open source and available on the software repository GitHub.
Quantum computers utilize quantum mechanics to perform a great deal of computations simultaneously, which has the potential to make them exponentially faster and more powerful than today's best supercomputers. But many issues need to be addressed before these devices can move out of the research lab.
For example, due to the sensitive nature of how quantum circuits work, tiny environmental changes, such as small temperature fluctuations, can interfere with quantum computation. When that happens, the quantum circuits are called decoherent -- which is to say they have lost the information once encoded in them.
"If we can consistently halve the circuit depth by better layout synthesis, we effectively double the time it takes for a quantum device to become decoherent," Cong said.
"This compilation research could effectively extend that time, and it would be the equivalent to a huge advancement in experimental physics and electrical engineering," Cong added. "So we expect these benchmarks to motivate both academia and the industry to develop better layout synthesis tools, which in turn will help drive advances in quantum computing."
Cong and his colleagues led a similar effort in the early 2000s to optimize integrated circuit design in classical computers. That research effectively pushed two generations of advances in computer processing speeds, using only optimized layout design, which shortened the distance between the transistors that comprise the circuit. This cost-efficient improvement was achieved without any other major investments in technological advances, such as physically shrinking the circuits themselves.
"Quantum processors in existence today are extremely limited by environmental interference, which puts severe restrictions on the length of computations that can be performed," said Mark Gyure, executive director of the UCLA Center for Quantum Science and Engineering, who was not involved in this study. "That's why the recent research results from Professor Cong's group are so important because they have shown that most implementations of quantum circuits to date are likely extremely inefficient and more optimally compiled circuits could enable much longer algorithms to be executed. This could result in today's processors solving much more interesting problems than previously thought. That's an extremely important advance for the field and incredibly exciting."
###
The research was partially supported by NEC Corporation through an industrial partnership program at Center for Domain-Specific Computing at UCLA, which Cong directs.
Cong is also a member of the Center for Quantum Science and Engineering.
####
For more information, please click here
Contacts:
Christine Wei-li Lee
310-206-0540
@uclanewsroom
Copyright © University of California - Los Angeles
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Quantum Computing
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||