Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Quantum simulation: Particle behavior near the event horizon of block hole

(a) The schematic of mapping the behavior of fermion pair into a photonic lattice. (b) The designed bi-layer waveguide lattice and the corresponding dispersion relation. (c) The cross-section profile of the fabricated lattices. (d) The imagined output probability distribution of single-photon wave packet splitting to two parts and moving in opposite direction. (e) The output probability distributions with different excited positions in the same lattice. (f) The separation distance increases with the excited position linearly.

CREDIT
©Science China Press
(a) The schematic of mapping the behavior of fermion pair into a photonic lattice. (b) The designed bi-layer waveguide lattice and the corresponding dispersion relation. (c) The cross-section profile of the fabricated lattices. (d) The imagined output probability distribution of single-photon wave packet splitting to two parts and moving in opposite direction. (e) The output probability distributions with different excited positions in the same lattice. (f) The separation distance increases with the excited position linearly. CREDIT ©Science China Press

Abstract:
The vast universe can always arise people's infinite imagination and yearning. Black hole, as one of the most attractive heavenly bodies in the universe, are waiting to be explored and studied. However, due to the limitations of technology, human is still unable to go into the depths of universe, let alone reach the vicinity of a black hole.

Quantum simulation: Particle behavior near the event horizon of block hole

Beijing, China | Posted on July 16th, 2020

Fortunately, based on the equivalence between the metric of curved space-time in general relativity and the electromagnetic parameters in electromagnetic materials, the physical scientist has developed the method of transformation optics to simulate the curved space-time of gravitational field. Now, the scientist is able to study and demonstrate the evolution of particles in curved space-time experimentally. However, up to now, these simulations are limited either in classical regime or in flat space whereas quantum simulation related with general relativity is rarely involved. In the quantum field related with the gravitational effect, there are many striking phenomena, such as Hawking radiation.

Recently, Yao Wang and Xianmin Jin from Shanghai Jiao Tong University and Chong Sheng and Hui Liu from the Nanjing University made an exciting progress in observing particle behavior near the event horizon of block hole.

Based on femtosecond laser direct write technology, the waveguide on-site energy and the coupling between waveguides can be well controlled. Inspired by the concept of transformation optics, the team successfully constructed a one-dimensional artificial black hole using a single-layer non-uniform-coupling photonic waveguide lattice. Comparing to linear time evolution in the flat space, the dynamic behavior of single-photon wave packets near the horizon of a black hole accelerates exponentially, and its exponential index depends on the curvature of the black hole.

The team further designed the two-layer photonic waveguide lattice and experimentally observed the acceleration, generation, and evolution of fermion pairs near the event horizon of the black hole: a single-photon packet with positive energy successfully escaped from the black hole, while a single-photon packet with negative energy was captured. The result, which deviates from the intuition that photons are always trapped by black holes, is found well analogue to Hawking radiation which completely origins from quantum effects associated with gravitational effects. Due to vacuum fluctuations, particle-antiparticle pairs are generated near the event horizon of the black hole. Particles with negative energy fall into the black hole, while particles with negative energy escape. This causes the black hole to lose mass, and it would appear that the black hole has just emitted a particle.

Finally, the team think that higher-dimensional curved space-time can be constructed based on the experimental platform. For example, a two-dimensional waveguide array can be used to simulate three-dimensional space-time, and a two-dimensional waveguide array with photon polarization or frequency can be used to simulate four-dimensional space-time. Furthermore, due to the propagation direction plays the role as the time in our experimental platform, dynamics metric can also be emulated based on this experimental platform, such as FRW metric, a model describing cosmic expansion as time evolution, and gravitational wave, which is the ripple of spacetime.

####

For more information, please click here

Contacts:
Xian-Min Jin

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Quantum Physics

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Aerospace/Space

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project