Home > Press > Science fiction becomes fact -- Teleportation helps to create live musical performance
![]() |
Dr Alexis Kirke (right) and soprano Juliette Pochin during the first duet between a live singer and a quantum supercomputer CREDIT University of Plymouth |
Abstract:
Teleportation is most commonly the stuff of science fiction and, for many, would conjure up the immortal phrase "Beam me up Scotty".
However, a new study has described how its status in science fact could actually be employed as another, and perhaps unlikely, form of entertainment - live music.
Dr Alexis Kirke, Senior Research Fellow in the Interdisciplinary Centre for Computer Music Research at the University of Plymouth (UK), has for the first time shown that a human musician can communicate directly with a quantum computer via teleportation.
The result is a high-tech jamming session, through which a blend of live human and computer-generated sounds come together to create a unique performance piece.
Speaking about the study, published in the current issue of the Journal of New Music Research, Dr Kirke said: "The world is racing to build the first practical and powerful quantum computers, and whoever succeeds first will have a scientific and military advantage because of the extreme computing power of these machines. This research shows for the first time that this much-vaunted advantage can also be helpful in the world of making and performing music. No other work has shown this previously in the arts, and it demonstrates that quantum power is something everyone can appreciate and enjoy."
Quantum teleportation is the ability to instantaneously transmit quantum information over vast distances, with scientists having previously used it to send information from Earth to an orbiting satellite over 870 miles away.
In the current study, Dr Kirke describes how he used a system called MIq (Multi-Agent Interactive qgMuse), in which an IBM quantum computer executes a methodology called Grover's Algorithm.
Discovered by Lov Grover at Bell Labs in 1996, it was the second main quantum algorithm (after Shor's algorithm) and gave a huge advantage over traditional computing.
In this instance, it allows the dynamic solving of musical logical rules which, for example, could prevent dissonance or keep to ¾ instead of common time.
It is significantly faster than any classical computer algorithm, and Dr Kirke said that speed was essential because there is actually no way to transmit quantum information other than through teleportation.
The result was that when played the theme from Game of Thrones on the piano, the computer - a 14-qubit machine housed at IBM in Melbourne - rapidly generated accompanying music that was transmitted back in response.
Dr Kirke, who in 2016 staged the first ever duet between a live singer and a quantum supercomputer, said: "At the moment there are limits to how complex a real-time computer jamming system can be. The number of musical rules that a human improviser knows intuitively would simply take a computer too long to solve to real-time music. Shortcuts have been invented to speed up this process in rule-based AI music, but using the quantum computer speed-up has not be tried before. So while teleportation cannot move information faster than the speed of light, if remote collaborators want to connect up their quantum computers - which they are using to increase the speed of their musical AIs - it is 100% necessary. Quantum information simply cannot be transmitted using normal digital transmission systems."
####
For more information, please click here
Contacts:
Alan Williams
44-175-258-8004
@PlymUni
Copyright © University of Plymouth
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum Physics
Quantum communication
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |