Home > Press > Macroscopic quantum interference in an ultra-pure metal
Scanning electron microscope image of a PdCoO2 microstructure to measure c-axis resistivity. CREDIT © MPI CPfS |
Abstract:
That visible light holds the character of a wave can be demonstrated in simple optics experiments, or directly witnessed when rainbows appear in the sky. Although the subtle laws of quantum mechanics, that is, wave mechanics, ultimately govern all the processes of electron transportelectrons in solids, their wave-like nature of the electrons is not often apparent to the casual observer. A classical picture of electrons as solid particles goes surprisingly far in explaining electric currents in metals. As high school students see in experiments with water waves, and we observe and use with light waves in many optical devices, interference is a fundamental property associated with wave-like behavior. Indeed, Davisson and Germer's famous observation of interference in experiments with dilute beams of electrons, nearly a century ago, gave key experimental support to the correctness of the then-new quantum theory.
In experiments on solids, however, signatures of quantum interference are rare and hard to observe. This is essentially because there are so many electrons, and so many ways in which they can be 'scrambled up', that most interference effects are invisible to experiments that probe distances of more than a few atomic spacings.
One of the themes of research in the Physics of Quantum Materials department is the study of exotic strange layered metals from a structural class with the equally strange name 'delafossites', stemming from the famous French crystallographer Gabriel Delafosse. They are notable because they conduct electricity incredibly well. Indeed, at room temperature one of them, PtCoO2, is the best electrical conductor ever discovered. As part of our research on the delafossites, we were studying how the conduction perpendicular to the layers depends on magnetic field, in crystals that had been sculpted into particular geometries using a focused ion beam (see Fig. 1). To our complete surprise, we observed strong oscillations in this conductivity, of a kind that are a signature of some kindsignaling of interference (see Fig. 2). After a long period of follow-up experiments at this institute and in the new group of our former colleagues Philip Moll and Carsten Putzke, now at EPFL in Lausanne, we collaborated with theorists Takashi Oka and Roderich Moessner in our neighbour institute in Dresden and Ady Stern from the Weizmann Institute in Israel to propose an explanation for what is going on. Remarkably, it requires a form of quantum coherence over macroscopic distances of up to 50000 atomic lattice spacings. It is only observable because of the remarkable purity of the delafossites, whose origin we established in another set of experiments, also published recently. High quality materials continue to hold a wealth of surprises and delights for those who make and study them!
####
For more information, please click here
Contacts:
Carsten Putzke
Copyright © Max Planck Institute for Chemical Physics of Solids
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Quantum Physics
Energy transmission in quantum field theory requires information September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Quantum nanoscience
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||