Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Ultrafast probing reveals intricate dynamics of quantum coherence: Ultrafast, multidimensional spectroscopy unlocks macroscopic-scale effects of quantum electronic correlations

Three excitation pulses with wave vectors k1, k2, and k3 form three corners of a box with 4th pulse (local oscillation; LO) on the fourth corner.

CREDIT
FLEET
Three excitation pulses with wave vectors k1, k2, and k3 form three corners of a box with 4th pulse (local oscillation; LO) on the fourth corner. CREDIT FLEET

Abstract:
Ultrafast, multidimensional spectroscopy unlocks macroscopic-scale effects of quantum electronic correlations.

Ultrafast probing reveals intricate dynamics of quantum coherence: Ultrafast, multidimensional spectroscopy unlocks macroscopic-scale effects of quantum electronic correlations

Australia | Posted on March 2nd, 2020

Researchers found that low-energy and high energy states are correlated in a layered, superconducting material LSCO (lanthanum, strontium, copper, oxygen).

Exciting the material with an ultrafast (<100fs), beam of near-infrared light produces coherent excitations lasting a surprisingly ‘long’ time of around 500 femtoseconds, originating from a quantum superposition of excited states within the crystal.

The strong correlation between the energy of this coherence and the optical energy of the emitted signal indicates a coherent interaction between the states at low and high energy.

This kind of coherent interaction, reported here for the first time, is the root of many intriguing and poorly-understood phenomena displayed by quantum materials.

It is one of the first applications of multidimensional spectroscopy to study of correlated electron systems such as high-temperature superconductors.

PROBING QUANTUM MATERIALS
diagram
Three excitation pulses with wave vectors k1, k2, and k3 form three corners of a box with 4th pulse (local oscillation; LO) on the fourth corner.

The intriguing magnetic and electronic properties of quantum materials hold significant promise for future technologies.

However, controlling these properties requires an improved understanding of the ways in which macroscopic behaviour emerges in complex materials with strong electronic correlations.

Potentially useful electric and magnetic properties of quantum materials with strong electronic correlations include: Mott transition, colossal magnetoresistance, topological insulators, and high-temperature superconductivity.

Such macroscopic properties emerge out of microscopic complexity, rooted in the competing interactions between the degrees of freedom (charge, lattice, spin, orbital, and topology) of electronic states.

While measurements of the dynamics of excited electronic populations have been able to give some insight, they have largely neglected the intricate dynamics of quantum coherence.

In this new study, researchers applied multidimensional coherent spectroscopy to the challenge for the first time, utilising the technique’s unique capability to differentiate between competing signal pathways, selectively exciting and probing low-energy excitations.

Researchers analysed the quantum coherence of excitations produced by hitting LSCO (lanthanum, strontium, copper and oxygen) crystals with a sequence of tailored, ultrafast beams of near-infrared light lasting less than 100 femtoseconds

This coherence has unusual properties, lasts a surprisingly ‘long’ time of around 500 femtoseconds, and originates from a quantum superposition of excited states within the crystal.

“We found a strong correlation between the energy of this coherence and the optical energy of the emitted signal, which indicates a special coherent interaction between the states at low and high energy in these complex systems,” says study author Jeff Davis (Swinburne University of Technology).

Because the number of available excitations affects the band structure of a crystal, the effective energy structure changes transiently during measurement, which links low-energy excitations and optically excited electronic states.

The study demonstrates that multidimensional coherent spectroscopy can interrogate complex quantum materials in unprecedented ways.

As well as representing a major advancement in ultrafast spectroscopy of correlated materials, the work has wider significance in optics/photonics, chemistry, nanoscience, and condensed-matter science.

####

About FLEET
ULTRAFAST SPECTROSCOPY AT FLEET
light-transformed materialsWithin FLEET, Jeff Davis uses ultrafast spectroscopy to study and control the microscopic interactions in 2D materials and how they lead to macroscopic behaviour.

In FLEET’s third research theme, light-transformed materials, systems are temporarily driven out of thermal equilibrium to investigate the qualitatively different physics displayed and new capabilities for dynamically controlling their behaviour.

FLEET is an Australian Research Council-funded research centre bringing together over a hundred Australian and international experts to develop a new generation of ultra-low energy electronics.

For more information, please click here

Contacts:
Errol Hunt

042-313-9210

@FLEETcentre

Prof Jeff Davis

Copyright © FLEET

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

THE STUDY

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Quantum Physics

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Quantum nanoscience

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project