Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block

Using a simple rod-like building block with hydroxamic acids at both ends scientists at the Technical University of Munich created self-assembling porous, chrial nano structures.

CREDIT
Bodong Zhang / TUM
Using a simple rod-like building block with hydroxamic acids at both ends scientists at the Technical University of Munich created self-assembling porous, chrial nano structures. CREDIT Bodong Zhang / TUM

Abstract:
Nanoscience can arrange minute molecular entities into nanometric patterns in an orderly manner using self-assembly protocols. Scientists at the Technical University of Munich (TUM) have functionalized a simple rod-like building block with hydroxamic acids at both ends. They form molecular networks that not only display the complexity and beauty of mono-component self-assembly on surfaces; they also exhibit exceptional properties.

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block

Munich, Germany | Posted on January 16th, 2020

Designing components for molecular self-assembly calls for functionalities that 'interlock'. For example, our genetic information is encoded in two DNA strands, zipped together in a 'spiral staircase' double helix structure in a self-assembly process that is stabilized by hydrogen bonding.

Inspired by nature's 'zippers' researchers at the Technical University of Munich aim to construct functional nanostructures to push the boundaries of man-made structures.

Building blocks for complex nanostructures

Scientists at the Technical University of Munich, diverse in discipline, nationality and gender, joined forces to explore a new feature in two-dimensional architectures: a chemical group named hydroxamic acid.

A conceptually simple building block was prepared at the Chair of Proteomics and Bioanalytics: a rod-like molecule with a hydroxamic acid group at each end. This building block was then transferred to the Chair of Surface and Interface Physics, where its assembly was inspected on atomically planar silver and gold surfaces.

A nano-porous network

A combination of advanced microscopy tools, spectroscopy and density functional theory investigations found that the molecular building block adapts its shape somewhat in the environment of the supporting surface and its neighboring molecules. This affords an unusual manifold of supramolecular surface motifs: two to six molecules held together by intermolecular interactions.

Only a handful of these motifs self-organized into 2-D crystals. Among them, an unparalleled network emerged, whose patterns evoke images of sliced lemons, snowflakes or rosettes. They feature three differently sized pores able to snuggly hold individual small molecules of gas such as carbon monoxide in the smallest, or small proteins like insulin in the largest.

"In this regard, it is a milestone in the tessellations achieved by molecular nanostructures and the number of different pores expressed in crystalline 2-D networks," says Dr. Anthoula Papageorgiou, last author of the publication. "It thus offers unique opportunities in bottom-up nano-templating, which we will explore further."

Nanocages with a twist

Like our left and right hands, the shape of two mirrored cage structures cannot be superimposed. Since the 19th century, academics have characterized this type of object symmetry as 'chiral', from the ancient Greek χε?ρ (hand). These kinds of molecules are frequently found in natural compounds. Chirality influences interactions of polarized light and magnetic properties and plays a vital role in life.

For example, our olfactory receptors react very differently to the two mirror images of the limonene molecule: one smells like lemon, the other like pine. This so-called chiral recognition is a process that can determine whether a molecule acts as medicine or poison.

The inner walls of the obtained nanostructure cages offer sites that can direct guest molecules. The researchers observed such a process in some of the larger pores, where three of the same molecules assembled as a chiral object. At room temperature, this object is in motion, like a music box ballerina, leading to a blurred image.

In their future work, the team hopes to steer these kinds of phenomena for chiral recognition and artificial nano-machinery.

###

Funding was provided by the Postdoctoral Council of China, the China Scholarship Council, the International Max Planck Research School of Advanced Photon Science, the European Union's research project 2D-INK, the European Research Council (project NanoSurfs), the German Research Foundation (via Cluster of Excellence Munich?Centre for Advanced Photonics and Heisenberg professorship). Computations were performed on the Shared Hierarchical Academic Research Computing Network (SHARCNET) and the Cedar, Graham, and Niagara clusters of Compute/Calcul Canada.

####

For more information, please click here

Contacts:
Dr. Andreas Battenberg

49-892-891-0510

Copyright © Technical University of Munich (TUM)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication:

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

2 Dimensional Materials

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Nanobiotechnology

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Low-cost formulation reduces dose and increases efficacy of drug against worms: Praziquantel, usually administered in large tablets, is the only anthelmintic available on the market. New form of presentation uses nanotechnology and facilitates use by children and pets May 16th, 2025

Research partnerships

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project