Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Artificial cells act more like the real thing

Cell-mimicking vesicles with enzymes incorporated into their membrane show active motility upon catalysis.

CREDIT
Subhadip Ghosh
Cell-mimicking vesicles with enzymes incorporated into their membrane show active motility upon catalysis. CREDIT Subhadip Ghosh

Abstract:
Protocells -- artificial cells -- that are active and mimic living cells by moving independently and that are biocompatible and enzymatically active are now possible using an improved method developed by Penn State researchers.

Artificial cells act more like the real thing

University Park, PA | Posted on December 6th, 2019

Living cells are difficult to grow in the laboratory, so researchers sometimes work with synthetic cells, but these have had research limitations because they lack real cell characteristics.

"One of the challenges of cell research is it's sometimes very hard to run controlled experiments on a?cell's motility, especially due to surface enzyme activity," said Darrell Velegol, distinguished professor of chemical engineering. "The research team developed a simple way to make an artificial cell that doesn't do everything a regular cell does, like reproduce, have genetic mutations or anything like that, but it actively moves. That's important because how cells move is poorly understood, especially how enzymes' activity play into cell movement."

The team's protocells are used to investigate how the activity of natural enzymes like ATPase can propel the active movement of the protocells. The biochemical process of ATPase enzyme involves conversion of ATP (adenosine triphosphate) into the product ADP (adenosine diphosphate). ATP is a complex organic chemical that provides energy for living cells and ADP is an organic compound that plays an important role in how cells release and store energy.

"Attempts at similar experiments in the past decade had the enzymes incorporated inside of micron-sized sacks called polymeric vesicles, or tethered onto the surface of hard particles," said Subhadip Ghosh, postdoctoral researcher in chemistry. "But these attempts didn't have significant biological resemblance like our protocells."

In the research team's experiments, the protocells have actual artificial membranes composed of a naturally occurring lipid called phosphatidylcholine. The ATPase enzymes were incorporated directly into the membrane.

"Our results basically give other researchers the first steps toward making artificial cells with enzymatic activity," Ghosh said.

One unexpected result from the study, which was made available online in August 2019 ahead of final publication on September 11, 2019 in an issue of Nano Letters, happened during diffusion experiments which were performed at a single molecular regime. As expected, the movement of the protocells was low for low concentrations of ATP.

"Quite surprisingly, the movement of the protocells dropped significantly at high concentration of ATP," said Ayusman Sen, the Verne M. Willaman Professor of Chemistry at Penn State.

According to the researchers, this was as counterintuitive as pressing an automobile's gas pedal and having the vehicle slow down. After performing comprehensive control experiments, the researchers concluded that when ADP concentration is high, it may bind to the ATPase and suppress the substrate ATP activity, causing reduced motility.

Having the ability to fabricate the enzymatically active protocells opens new opportunities. Armed with these mimics of motile living cells, the researchers aim to reveal the fundamental mechanisms governing active membrane dynamics and cellular movement.?Given the current limited understanding of how cells move, including how enzyme action plays into cell movement, the research team members believe their work can have significant implications for future medical research.

"A key challenge is to estimate the mechanical forces that drive the protocell movement, and to discover changes in the enzyme structure during that process," said Farzad Mohajerani, research assistant in chemical engineering. "Knowing that structure-function relationship for the movement of the protocells will enable their design for potential in vivo applications like medical sensing and lab analysis."

###

Along with Ghosh, Mohajerani, Velegol and Sen, other Penn State researchers who participated in the study included Peter Butler, associate dean for education and graduate professional programs in the College of Engineering and professor of biomedical engineering, and Seoyoung Son, postdoctoral researcher in biomedical engineering.

The National Science Foundation's Center for Chemical Innovation supported this research.

####

For more information, please click here

Contacts:
A'ndrea Elyse Messer

814-865-5689

@penn_state

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Chemistry

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project