Home > Press > Growing nano-tailored surfaces using micellar brushes
Abstract:
Growing nanoscale polymer brushes on materials' surfaces overcomes a key challenge in surface chemistry, researchers report, creating a new way to fabricate a diverse array of materials that could hold advanced uses in catalysis or chemical separation applications, for example.
Their approach represents a crucial step forward in the search for simple and general techniques to create functional surfaces with tailor-made chemical properties, writes Alejandro Presa Soto in a related Perspective; "Pandora's box is now open, and the limits of this approach are only restricted by the imagination and skills of the scientific community." As technology advances, the ability to create advanced materials with specific surface properties and functionalities is becoming critically significant in a wide variety of areas including chemical engineering and biomedicine. One recently developed approach for creating functionalized surfaces makes use of polymer chains, grafted to surfaces in brush-like patches. However limited, the method allows for tailoring of the surface chemistry at the molecular level. Similar approaches using nano- or micron-scale structures hold great promise for greatly expanded functionality and applications; however, the precise fabrication of these surfaces remains a prohibitive challenge. Jiandon Cai and colleagues address this by growing nanoscale micellar brushes directly on a material's surface. Cai et al. attached small crystalline micelle-seeds on a variety of surfaces, including silicon wafers, graphene oxide nanosheets and gold nanoparticles. Unimers are used to initiate the crystallization-driven growth of well-defined cylindrical nanostructures over the seed-coated surface. The approach allows for the precise control over the density, length and chemistry of the micellar brushes, which can further be outfitted with other functional molecules and nanoparticles to enable a variety of catalysis and antibacterial and chemical separation applications.
####
For more information, please click here
Contacts:
Science Press Package Team
202-326-6440
@AAAS
Copyright © American Association for the Advancement of Science
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||