Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Growing nano-tailored surfaces using micellar brushes

Abstract:
Growing nanoscale polymer brushes on materials' surfaces overcomes a key challenge in surface chemistry, researchers report, creating a new way to fabricate a diverse array of materials that could hold advanced uses in catalysis or chemical separation applications, for example.

Growing nano-tailored surfaces using micellar brushes

Washington, DC | Posted on November 29th, 2019

Their approach represents a crucial step forward in the search for simple and general techniques to create functional surfaces with tailor-made chemical properties, writes Alejandro Presa Soto in a related Perspective; "Pandora's box is now open, and the limits of this approach are only restricted by the imagination and skills of the scientific community." As technology advances, the ability to create advanced materials with specific surface properties and functionalities is becoming critically significant in a wide variety of areas including chemical engineering and biomedicine. One recently developed approach for creating functionalized surfaces makes use of polymer chains, grafted to surfaces in brush-like patches. However limited, the method allows for tailoring of the surface chemistry at the molecular level. Similar approaches using nano- or micron-scale structures hold great promise for greatly expanded functionality and applications; however, the precise fabrication of these surfaces remains a prohibitive challenge. Jiandon Cai and colleagues address this by growing nanoscale micellar brushes directly on a material's surface. Cai et al. attached small crystalline micelle-seeds on a variety of surfaces, including silicon wafers, graphene oxide nanosheets and gold nanoparticles. Unimers are used to initiate the crystallization-driven growth of well-defined cylindrical nanostructures over the seed-coated surface. The approach allows for the precise control over the density, length and chemistry of the micellar brushes, which can further be outfitted with other functional molecules and nanoparticles to enable a variety of catalysis and antibacterial and chemical separation applications.

####

For more information, please click here

Contacts:
Science Press Package Team

202-326-6440

@AAAS

Copyright © American Association for the Advancement of Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project