Home > Press > Bio-inspired nano-catalyst guides chiral reactions
Abstract:
Many medicines are twisted molecules with two mirror image versions, but the body uses only one. Inspired by photosynthetic bacteria, a team at the University of Michigan built a catalyst that guides chemical reactions toward the right version of twisted molecules. It could lead to more efficient production of some medicines.
The curl in drug molecules, a property that's known as chirality, helps them to interact with similarly curved molecules in human cells. The molecule with the opposite curve is inactive or, in the worst case can be very toxic. Yet chemical processes usually give us both versions of chiral molecules, or enantiomers, in equal amounts.
"Chiral catalysts today have been optimized to work in liquids that are expensive and environmentally unfriendly. These catalysts can produce left- or right-enantiomers almost exclusively, but when we want to carry reactions in water, they are destroyed," said Nicholas Kotov, the Joseph B. and Florence V. Cejka Professor of Engineering, who led the team that designed and tested the new catalyst.
It would be cheaper and safer to run reactions in water. The catalysts developed by Kotov's team can do this. They are assemblies of mineral nanoparticles, made chiefly from zinc oxide. They mimic nanoscale organs in bacteria, and they are at least 10 times better at selecting a particular version of a chiral molecule than earlier catalysts of this type.
"Our chiral selectivity is consistently above 20% while the previous reactions of similar type barely broke 1%," said Kotov. "Twenty percent may not seem like much, but already it is technologically valuable because it substantially reduces the cost of the intended product."
For instance, some medications--which currently contain equal amounts of the active and inactive enantiomers--could be produced more efficiently with these catalysts.
"Cost savings are already possible because the catalysts are inexpensive, stable and reusable. Replacing organic solvents with water also makes a large difference both for economics and the environment."
This is how the catalysts work: the gaps between the chiral nanoparticles within the 0.0001-millimeter "supraparticle" are twisted, so they prefer to host molecules with a similar curve. The nanoparticles catch light and transform it into electrical charges, which are passed to the molecules in the gaps.
The molecules use the energy to form a new bond. The molecules with the correct twists spend more time inside the supraparticle, so they end up producing more of the twisted products.
The team is exploring how to improve the chiral selectivity further, perhaps by using twisted light.
###
The study is published in the journal Nature Communications. It was funded by the U.S. National Science Foundation, National Natural Science Foundation of China, Department of Defense and Air Force Office of Scientific Research.
####
For more information, please click here
Contacts:
Katherine McAlpine
Copyright © University of Michigan
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Study: Single- and multi-component chiral supraparticles as modular enantioselective catalysts:
Related News Press |
Chemistry
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||