Home > Press > Highest-throughput 3D printer is future of manufacturing: Rapid manufacturing on-demand could put warehouses, molds into the past
HARP prints vertically, using projected UV light to cure liquid resins into hardened plastic |
Abstract:
•New printer will be commercially available in the next 18 months
•Can safely print both hard, durable parts and elastic, bouncy objects
•Innovative interface circulates liquid to remove heat, which limits current stereolithographic 3D printing
•Could be used to print parts for medical devices, cars, airplanes, construction and more
Northwestern University researchers have developed a new, futuristic 3D printer that is so big and so fast it can print an object the size of an adult human in just a couple of hours.
Called HARP (high-area rapid printing), the new technology enables a record-breaking throughput that can manufacture products on demand. Over the last 30 years, most efforts in 3D printing have been aimed at pushing the limits of legacy technologies. Often, the pursuit of larger parts has come at the cost of speed, throughput and resolution. With HARP technology, this compromise is unnecessary, enabling it to compete with both the resolution and throughput of traditional manufacturing techniques.
The prototype HARP technology is 13-feet tall with a 2.5 square-foot print bed and can print about half a yard in an hour — a record throughput for the 3D printing field. This means it can print single, large parts or many different small parts at once.
“3D printing is conceptually powerful but has been limited practically,” said Northwestern’s Chad A. Mirkin, who led the product’s development. “If we could print fast without limitations on materials and size, we could revolutionize manufacturing. HARP is poised to do that.”
Mirkin predicts that HARP will be available commercially in the next 18 months.
The work will be published Oct. 18 in the journal Science. Mirkin is the George B. Rathmann Professor of Chemistry in Northwestern’s Weinberg College of Arts and Sciences and director of the International Institute of Nanotechnology. David Walker and James Hedrick, both researchers in Mirkin’s laboratory, coauthored the paper.
Keeping it cool
HARP uses a new, patent-pending version of stereolithography, a type of 3D printing that converts liquid plastic into solid objects. HARP prints vertically and uses projected ultraviolet light to cure the liquid resins into hardened plastic. This process can print pieces that are hard, elastic or even ceramic. These continually printed parts are mechanically robust as opposed to the laminated structures common to other 3D-printing technologies. They can be used as parts for cars, airplanes, dentistry, orthotics, fashion and much more.
A major limiting factor for current 3D printers is heat. Every resin-based 3D printer generates a lot of heat when running at fast speeds — sometimes exceeding 180 degrees Celsius. Not only does this lead to dangerously hot surface temperatures, it also can cause printed parts to crack and deform. The faster it is, the more heat the printer generates. And if it’s big and fast, the heat is incredibly intense.
This problem has convinced most 3D printing companies to remain small. “When these printers run at high speeds, a great deal of heat is generated from the polymerization of the resin,” Walker said. “They have no way to dissipate it.”
‘Liquid Teflon’
The Northwestern technology bypasses this problem with a nonstick liquid that behaves like liquid Teflon. HARP projects light through a window to solidify resin on top of a vertically moving plate. The liquid Teflon flows over the window to remove heat and then circulates it through a cooling unit.
“Our technology generates heat just like the others,” Mirkin said. “But we have an interface that removes the heat.”
“The interface is also nonstick, which keeps the resin from adhering to the printer itself,” Hedrick added. “This increases the printer’s speed by a hundredfold because the parts do not have to be repeatedly cleaved from the bottom of the print-vat."
Goodbye, warehouses
Current manufacturing methods can be cumbersome processes. They often require filling pre-designed molds, which are expensive, static and take up valuable storage space. Using molds, manufacturers print parts in advance — often guessing how many they might need — and store them in giant warehouses.
Although 3D printing is transitioning from prototyping to manufacturing, current 3D printers’ size and speed have limited them to small-batch production. HARP is the first printer that can handle large batches and large parts in addition to small parts.
“When you can print fast and large, it can really change the way we think about manufacturing,” Mirkin said. “With HARP, you can build anything you want without molds and without a warehouse full of parts. You can print anything you can imagine on-demand.”
Largest in its class
While other print technologies have slowed down or reduced their resolution to go big, HARP does not make such concessions.
“Obviously there are many types of 3D printers out there — you see printers making buildings, bridges and car bodies, and conversely you see printers that can make small parts at very high resolutions,” Walker said. “We’re excited because this is the largest and highest throughput printer in its class.”
Printers on the scale of HARP often produce parts that must be sanded or machined down to their final geometry. This adds a large labor cost to the production process. HARP is in a class of 3D printers that uses high-resolution light-patterning to achieve ready-to-use parts without extensive post-processing. The result is a commercially viable route to the manufacturing of consumer goods.
Nano goes big
A world-renowned expert in nanotechnology, Mirkin invented the world’s smallest printer in 1999. Called dip-pen nanolithography, the technology uses a tiny pen to pattern nanoscale features. He then transitioned this to an array of tiny pens that channels light through each pen to locally generate features from photo-sensitive materials. The special nonstick interface used in HARP originated while working to develop this technology into a nanoscale 3D printer.
“From a volumetric standpoint, we have spanned over 18 orders of magnitude,” Mirkin said.
The study, “Rapid, large-volume, thermally-controlled 3D printing using a mobile liquid interface,” was supported by the Air Force Office of Scientific Research (award number FA9550-16-1-0150), the U.S. Department of Energy (award number DE-SC0000989) and the Sherman Fairchild Foundation.
Editor’s note: Mirkin, Walker and Hedrick have financial interests in Azul 3D, Inc., a company that has licensed HARP intellectual property (U.S. patent application 62/815,175). All three have affiliations with Azul 3D, Inc. Northwestern University has financial interests (equity, royalties) in Azul 3D, Inc.
####
For more information, please click here
Contacts:
Amanda Morris at 847-467-6790 or
Copyright © Northwestern University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
3D & 4D printing/Additive-manufacturing
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Fiber sensing scientists invent 3D printed fiber microprobe for measuring in vivo biomechanical properties of tissue and even single cell February 10th, 2023
3D-printed decoder, AI-enabled image compression could enable higher-res displays December 9th, 2022
Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Patents/IP/Tech Transfer/Licensing
Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023
Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021
Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Simple ballpoint pen can write custom LEDs August 11th, 2023
Disposable electronics on a simple sheet of paper October 7th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||