Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Tiny bubbles in our body could fight cancer better than chemo

Bubbly extracellular vesicles (in red), carrying a combination of therapeutic drugs and genes, target breast cancer cells (in blue) in mice. Courtesy photo.
Bubbly extracellular vesicles (in red), carrying a combination of therapeutic drugs and genes, target breast cancer cells (in blue) in mice. Courtesy photo.

Abstract:
Healthy cells in our body release nano-sized bubbles that transfer genetic material such as DNA and RNA to other cells. It's your DNA that stores the important information necessary for RNA to produce proteins and make sure they act accordingly.

Tiny bubbles in our body could fight cancer better than chemo

East Lansing, MI | Posted on September 18th, 2019

These bubbly extracellular vesicles could become mini treatment transporters, carrying a combination of therapeutic drugs and genes that target cancer cells and kill them, according to new research from Michigan State University and Stanford University.

The study, which focused on breast cancer cells in mice, is published in Molecular Cancer Therapeutics.

"What we've done is improve a therapeutic approach to delivering enzyme-producing genes that can convert certain drugs into toxic agents and target tumors," said Masamitsu Kanada, lead author and an assistant professor of pharmacology and toxicology in MSU's Institute for Quantitative Health Science and Engineering.

These drugs, or prodrugs, start out as inactive compounds. But once they metabolize in the body, they're immediately activated and can get to work on fighting everything from cancer to headaches. Aspirin is an example of a common prodrug.

In this case, researchers used extracellular vesicles, or EVs, to deliver the enzyme-producing genes that could activate a prodrug combination therapy of ganciclovir and CB1954 in breast cancer cells. Minicircle DNA and regular plasmid - two different gene vectors that act as additional delivery mechanisms for DNA - were loaded into the vesicles to see which was better at helping transport treatment. This is known as a gene-directed enzyme, prodrug therapy.

They found that the minicircle DNA was 14 times more effective at delivery and even more successful at killing cancerous tumors.

"Interestingly, the plasmid delivery method didn't show any tumor cell killing," Kanada said. "Yet the minicircle DNA-based therapy killed more than half of the breast cancer cells in the mice."

According to Kanada, this new approach could effectively become a better cancer treatment option than chemotherapy down the road.

"Conventional chemotherapy isn't able to differentiate between tumors and normal tissue, so it attacks it all," Kanada said. "This non-specificity can cause severe side effects and insufficient drug concentration in tumors."

With EVs, treatment can be targeted and because of their compatibility with the human body, this type of delivery could minimize the risk of unwanted immune responses that can come with other gene therapies.

"If EVs prove to be effective in humans, it would be an ideal platform for gene delivery and it could be used in humans sooner than we expect," Kanada said.

A phase-one clinical trial, separate from Kanada's work, is set to start soon in the U.S. and will use EVs and a type of therapeutic RNA molecule for the treatment of metastatic pancreatic cancer.

While that trial moves forward, Kanada and his team will continue to further engineer and test EVs, improving their effectiveness and safety so using them as a cancer-fighting gene therapy in humans becomes reality.

###

The study was funded in part by the National Institutes of Health.

####

About Michigan State University
Michigan State University has been working to advance the common good in uncommon ways for more than 160 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For more information, please click here

Contacts:
Sarina Gleason

517-355-9742

Copyright © Michigan State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

original paper:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cancer

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project