Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Hard as a diamond? Scientists predict new forms of superhard carbon: A study identifies dozens of new carbon structures that are expected to be superhard, including some that may be about as hard as diamonds

An illustration depicts three of 43 newly predicted superhard carbon structures. The cages colored in blue are structurally related to diamond, and the cages colored in yellow and green are structurally related to lonsdaleite.

CREDIT
Credit: Bob Wilder / University at Buffalo, adapted from Figure 3 in P. Avery et al., npj Computational Materials, Sept. 3, 2019.
An illustration depicts three of 43 newly predicted superhard carbon structures. The cages colored in blue are structurally related to diamond, and the cages colored in yellow and green are structurally related to lonsdaleite. CREDIT Credit: Bob Wilder / University at Buffalo, adapted from Figure 3 in P. Avery et al., npj Computational Materials, Sept. 3, 2019.

Abstract:
Superhard materials can slice, drill and polish other objects. They also hold potential for creating scratch-resistant coatings that could help keep expensive equipment safe from damage.

Hard as a diamond? Scientists predict new forms of superhard carbon: A study identifies dozens of new carbon structures that are expected to be superhard, including some that may be about as hard as diamonds

Buffalo, NY | Posted on September 9th, 2019

Now, science is opening the door to the development of new materials with these seductive qualities.

Researchers have used computational techniques to identify 43 previously unknown forms of carbon that are thought to be stable and superhard -- including several predicted to be slightly harder than or nearly as hard as diamonds. Each new carbon variety consists of carbon atoms arranged in a distinct pattern in a crystal lattice.

The study -- published on Sept. 3 in the journal npj Computational Materials -- combines computational predictions of crystal structures with machine learning to hunt for novel materials. The work is theoretical research, meaning that scientists have predicted the new carbon structures but have not created them yet.

"Diamonds are right now the hardest material that is commercially available, but they are very expensive," says University at Buffalo chemist Eva Zurek. "I have colleagues who do high-pressure experiments in the lab, squeezing materials between diamonds, and they complain about how expensive it is when the diamonds break.

"We would like to find something harder than a diamond. If you could find other materials that are hard, potentially you could make them cheaper. They might also have useful properties that diamonds don't have. Maybe they will interact differently with heat or electricity, for example."

Zurek, PhD, a professor of chemistry in UB College of Arts and Sciences, conceived of the study and co-led the project with Stefano Curtarolo, PhD, professor of mechanical engineering and materials science at Duke University.

The quest for hard materials

Hardness relates to a material's ability to resist deformation. As Zurek explains, it means that "if you try to indent a material with a sharp tip, a hole will not be made, or the hole will be very small."

Scientists consider a substance to be superhard if it has a hardness value of over 40 gigapascals as measured through an experiment called the Vickers hardness test.

All of the study's 43 new carbon structures are predicted to meet that threshold. Three are estimated to exceed the Vickers hardness of diamonds, but only by a little bit. Zurek also cautions that there is some uncertainty in the calculations.

The hardest structures the scientists found tended to contain fragments of diamond and lonsdaleite -- also called hexagonal diamond -- in their crystal lattices. In addition to the 43 novel forms of carbon, the research also newly predicts that a number of carbon structures that other teams have described in the past will be superhard.

Speeding up discovery of superhard materials

The techniques used in the new paper could be applied to identify other superhard materials, including ones that contain elements other than carbon.

"Very few superhard materials are known, so it's of interest to find new ones," Zurek says. "One thing that we know about superhard materials is that they need to have strong bonds. Carbon-carbon bonds are very strong, so that's why we looked at carbon. Other elements that are typically in superhard materials come from the same side of the periodic table, such as boron and nitrogen."

To conduct the study, researchers used XtalOpt, an open-source evolutionary algorithm for crystal structure prediction developed in Zurek's lab, to generate random crystal structures for carbon. Then, the team employed a machine learning model to predict the hardness of these carbon species. The most promising hard and stable structures were used by XtalOpt as "parents" to spawn additional new structures, and so on.

The machine learning model for estimating hardness was trained using the Automatic FLOW (AFLOW) database, a huge library of materials with properties that have been calculated. Curtarolo's lab maintains AFLOW and previously developed the machine learning model with Olexandr Isayev's group at the University of North Carolina at Chapel Hill.

"This is accelerated material development. It's always going to take time, but we use AFLOW and machine learning to greatly accelerate the process," Curtarolo says. "The algorithms learn, and if you have trained the model well, the algorithm will predict the properties of a material -- in this case, hardness -- with reasonable accuracy."

"You can take the best materials predicted using computational techniques and make them experimentally," says study co-author Cormac Toher, PhD, assistant research professor of mechanical engineering and materials science at Duke University.

###

The first and second authors of the new study are UB PhD graduate Patrick Avery and UB PhD student Xiaoyu Wang, both in Zurek's lab. In addition to these researchers, Zurek, Curtarolo and Toher, the co-authors of the paper include Corey Oses and Eric Gossett of Duke University and Davide Proserpio of the Universitá degi Studi di Milano.

The research was funded by the U.S. Office of Naval Research, with additional support from the Universitá degi Studi di Milano, and computational support from UB's Center for Computational Research.

npj Computational Materials -- part of the Nature Partner Journals series -- is a Nature Research journal published by Springer Nature in partnership with Shanghai Institute of Ceramics, Chinese Academy of Sciences.

####

For more information, please click here

Contacts:
Charlotte Hsu

716-645-4655

Copyright © University at Buffalo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives Ł1 million grant to revolutionize miniature optical devices May 17th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project