Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Moving faster in a crowd

Molecular model of the crowded interior of a bacterial cell. New research shows that particles can move more quickly through crowds if the crowding molecules are non-uniformly distributed.

CREDIT
Adrian H Elcock, CC BY 2.0 ( https://creativecommons.org/licenses/by/2.0/legalcode )
Molecular model of the crowded interior of a bacterial cell. New research shows that particles can move more quickly through crowds if the crowding molecules are non-uniformly distributed. CREDIT Adrian H Elcock, CC BY 2.0 ( https://creativecommons.org/licenses/by/2.0/legalcode )

Abstract:
Cell particles move more quickly through a crowded cellular environment when the crowding molecules are non-uniformly distributed. New research also shows that particle transport in crowded cells can actually be faster than movement in a non-crowded environment as long as the particles are moving from densely crowded areas to less crowded areas. Understanding the rate at which particles move in these environments can help researchers to better understand cellular processes that require multiple molecules to "find" each other in the crowded environment of the cell. A paper describing the research, by a team of Penn State scientists, appears online in the journal ACS Nano.

Moving faster in a crowd

University Park, PA | Posted on August 30th, 2019

"Crowding is common in living systems at different length scales, from busy hallways down to dense cellular cytoplasm," said Ayusman Sen, Verne M. Willaman Professor of Chemistry and Distinguished Professor of Chemistry and Chemical Engineering at Penn State and one of the leaders of the research team. "The insides of cells are very, very crowded with proteins, macromolecules and organelles. Molecules that are involved in chemical reactions required by the cell must be transported through this crowded, viscous environment to find their partner reagents. If the environment is uniformly crowded, movement slows, but we know that the inside of a cell is non-uniform; there are gradients of macromolecules and other species. So, we were interested in how these gradients would influence transport at the nanoscale."

The researchers compared the movement of various "tracer" colloids--insoluble particles suspended in a liquid--through different environments using microfluidics. A microfluidic device can be filled with different solutions in which the researchers establish gradients--from high to low--of "crowder" macro-molecules in the fluid. The tracers, which can be large or small, hard or soft and deformable, are fluorescently labeled allowing the researchers to track their movement with a confocal microscope.

"We were surprised to see that the tracers moved faster in gradients of crowders than they did through a fluid with no crowders at all," said Farzad Mohajerani, a graduate student in chemical engineering at Penn State and co-first author of the paper. "We think that the densely packed crowders actually put a pressure on the tracers to force them toward less dense areas. Large tracer molecules moved faster than small ones, and soft, deformable tracers moved faster than hard ones."

"The soft, deformable tracers are better representatives of actual species moving around in cells," said Matthew Collins, a graduate student in chemistry at Penn State and co-first author of the paper. "We think that they can move faster because, unlike hard particles, they can squeeze through tighter areas."

"Our experiments and model not only show that molecules can move faster through gradients of macromolecular crowding, we think that these rates of movement may increase further inside actual living cells where other active moving molecules could increase the crowding pressure," said Sen.

###

In addition to Sen, Collins, and Mohajerani, the research team at Penn State included Subhadip Ghosh, Rajarshi Guha, Tae-Hee Lee, Peter J. Butler, and Darrel Velegol. The research was funded by the U.S. National Science Foundation.

####

For more information, please click here

Contacts:
Sam Sholtis

814-865-1390

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Microfluidics/Nanofluidics

Implantable device shrinks pancreatic tumors: Taming pancreatic cancer with intratumoral immunotherapy April 14th, 2023

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Oregon State University research pushes closer to new therapy for pancreatic cancer May 6th, 2022

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project