Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Cyborg heart could help scientists better understand the human organ

A miniature cyborg heart (shown here in a dish, being tested for electrical activity) could help researchers better understand how the human heart works.
Credit: Adapted from Nano Letters 2019, DOI: 10.1021/acs.nanolett.9b02512
A miniature cyborg heart (shown here in a dish, being tested for electrical activity) could help researchers better understand how the human heart works. Credit: Adapted from Nano Letters 2019, DOI: 10.1021/acs.nanolett.9b02512

Abstract:
In The Wizard of Oz, the Tin Man famously sang, “If I only had a heart . . . “ Although the Tin Man had to be satisfied with a heart-shaped clock, researchers reporting in ACS’ Nano Letters have now created a miniature cyborg heart that produces electrical signals like the human version. But instead of implanting the organoid into a robot, the researchers plan to use it to study heart development, diseases and therapeutics.

Cyborg heart could help scientists better understand the human organ

Washington, DC | Posted on August 21st, 2019

To better understand complex organs like the heart and brain, scientists would like to implant sensors that could continuously monitor cellular activities throughout the entire 3D structure of an organ over a long period of time. However, implanting or injecting such devices directly into a living organ could destroy intricate cellular networks, and the sensors wouldn’t penetrate into all regions. Therefore, Jia Liu at the School of Engineering and Applied Sciences at Harvard and his colleagues wanted to incorporate nanoelectronics into human tissue to produce a miniature cyborg heart, outside of the human body.

The researchers made the cyborg heart by placing a soft, stretchable mesh of nanoelectronics over a sheet of stem cells growing in a dish. The cells grew around and through the mesh, covering it completely. By adding certain substances, the team triggered the stem cells to fold into a 3D shape, about the size of a pencil eraser, and transform into cardiac tissue that beat just like a real heart. The researchers used the embedded nanoelectronics to take electrophysiological recordings during the formation of the organoid, which could shed light on how the human heart develops. Further work on cyborg organoids could provide a “paradigm-shifting platform” to study organs of all types in health and disease, as well as to develop and test new therapeutics, the researchers say.

The authors acknowledge funding from the Harvard Dean’s Competitive Fund for Promising Scholarship and the facility at the Harvard University Center for Nanoscale Systems supported by the National Science Foundation.

####

About American Chemical Society
The American Chemical Society, the world’s largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Jia Liu, Ph.D.
School of Engineering and Applied Sciences
Harvard University
Cambridge, MA 02138
Phone: 617-599-7582

ACS Newsroom


Katie Cottingham

301-775-8455

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

“Cyborg Organoids: Implantation of Nanoelectronics via Organogenesis for Tissue-Wide Electrophysiology”:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Nanobiotechnology

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project