Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Cyborg heart could help scientists better understand the human organ

A miniature cyborg heart (shown here in a dish, being tested for electrical activity) could help researchers better understand how the human heart works.
Credit: Adapted from Nano Letters 2019, DOI: 10.1021/acs.nanolett.9b02512
A miniature cyborg heart (shown here in a dish, being tested for electrical activity) could help researchers better understand how the human heart works. Credit: Adapted from Nano Letters 2019, DOI: 10.1021/acs.nanolett.9b02512

Abstract:
In The Wizard of Oz, the Tin Man famously sang, “If I only had a heart . . . “ Although the Tin Man had to be satisfied with a heart-shaped clock, researchers reporting in ACS’ Nano Letters have now created a miniature cyborg heart that produces electrical signals like the human version. But instead of implanting the organoid into a robot, the researchers plan to use it to study heart development, diseases and therapeutics.

Cyborg heart could help scientists better understand the human organ

Washington, DC | Posted on August 21st, 2019

To better understand complex organs like the heart and brain, scientists would like to implant sensors that could continuously monitor cellular activities throughout the entire 3D structure of an organ over a long period of time. However, implanting or injecting such devices directly into a living organ could destroy intricate cellular networks, and the sensors wouldn’t penetrate into all regions. Therefore, Jia Liu at the School of Engineering and Applied Sciences at Harvard and his colleagues wanted to incorporate nanoelectronics into human tissue to produce a miniature cyborg heart, outside of the human body.

The researchers made the cyborg heart by placing a soft, stretchable mesh of nanoelectronics over a sheet of stem cells growing in a dish. The cells grew around and through the mesh, covering it completely. By adding certain substances, the team triggered the stem cells to fold into a 3D shape, about the size of a pencil eraser, and transform into cardiac tissue that beat just like a real heart. The researchers used the embedded nanoelectronics to take electrophysiological recordings during the formation of the organoid, which could shed light on how the human heart develops. Further work on cyborg organoids could provide a “paradigm-shifting platform” to study organs of all types in health and disease, as well as to develop and test new therapeutics, the researchers say.

The authors acknowledge funding from the Harvard Dean’s Competitive Fund for Promising Scholarship and the facility at the Harvard University Center for Nanoscale Systems supported by the National Science Foundation.

####

About American Chemical Society
The American Chemical Society, the world’s largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Jia Liu, Ph.D.
School of Engineering and Applied Sciences
Harvard University
Cambridge, MA 02138
Phone: 617-599-7582

ACS Newsroom


Katie Cottingham

301-775-8455

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

“Cyborg Organoids: Implantation of Nanoelectronics via Organogenesis for Tissue-Wide Electrophysiology”:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project