Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticles’ movement reveals whether they can successfully target cancer: Targeting nanoparticles rotate faster and move across larger areas

Gold nanostars have emerged as promising drug-delivery agents that can be designed to target cancer cells
Gold nanostars have emerged as promising drug-delivery agents that can be designed to target cancer cells

Abstract:
Novel imaging test differentiates between targeting and non-targeting nanoparticles based on their movements
By analyzing simple motion, researchers can identify when successful targeting may occur
Nanoparticles retain targeting function even when surrounded by proteins
Finding could be used to compare how different nanoparticles’ shapes and sizes can improve the design of targeting agents

Nanoparticles’ movement reveals whether they can successfully target cancer: Targeting nanoparticles rotate faster and move across larger areas

Evanston, IL | Posted on August 9th, 2019

Targeted drug-delivery systems hold significant promise for treating cancer effectively by sparing healthy surrounding tissues. But the promising approach can only work if the drug hits its target.



A Northwestern University research team has developed a new way to determine whether or not single drug-delivery nanoparticles will successfully hit their intended targets — by simply analyzing each nanoparticle’s distinct movements in real time.



By studying drug-loaded gold nanostars on cancer cell membranes, the researchers found that nanostars designed to target cancer biomarkers transited over larger areas and rotated much faster than their non-targeting counterparts. Even when surrounded by non-specifically adhered proteins, the targeting nanostars maintained their distinct, signature movements, suggesting that their targeting ability remains uninhibited.



“Moving forward, this information can be used to compare how different nanoparticle characteristics — such as particle size, shape and surface chemistry — can improve the design of nanoparticles as targeting, drug-delivery agents,” said Northwestern’s Teri Odom, who led the study.



The study published today (Aug. 9) in the journal ACS Nano. Odom is the Charles E. and Emma H. Morrison Professor of Chemistry in Northwestern’s Weinberg College of Arts and Sciences.



The medical field has long been searching for alternatives to current cancer treatments, such as chemotherapy and radiation, which harm healthy tissues in addition to diseased cells. Although these are effective ways to treat cancer, they carry risks of painful or even dangerous side effects. By delivering drugs directly into the diseased area — instead of blasting the whole body with treatment — targeted delivery systems result in fewer side effects than current treatment methods.



“The selective delivery of therapeutic agents to cancer tumors is a major goal in medicine to avoid side effects,” Odom said. “Gold nanoparticles have emerged as promising drug-delivery vehicles that can be synthesized with designer characteristics for targeting cancer cells.”



Various proteins, however, tend to bind to nanoparticles when they enter the body. Researchers have worried that these proteins might impede the particles’ targeting abilities. Odom and her team’s new imaging platform can now screen engineered nanoparticles to determine if their targeting function is retained in the presence of the adhered proteins.



The study, “Revolving single-nanoconstruct dynamics during targeting and nontargeting live-cell membrane interactions,” was supported by the National Institutes of Health (award number R01GM115763). Odom is a member of the International Institute for Nanotechnology, Chemistry of Life Processes Institute and Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

####

For more information, please click here

Contacts:
Amanda Morris at 847-467-6790 or

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Study:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Cancer

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project