Home > Press > Developing technologies that run on light
![]() |
Stanford researchers are developing a nanoscale photon diode that could contribute to technologies that run on light rather than electricity. (Image credit: Getty Images) |
Abstract:
The future of faster, more efficient information processing may come down to light rather than electricity. Mark Lawrence, a postdoctoral scholar in materials science and engineering at Stanford, has moved a step closer to this future with a scheme to make a photon diode - a device that allows light to only flow in one direction - which, unlike other light-based diodes, is small enough for consumer electronics.
All he had to do was design smaller-than-microscopic structures and break a fundamental symmetry of physics.
"Diodes are ubiquitous in modern electronics, from LEDs (light emitting diodes) to solar cells (essentially LEDs run in reverse) to integrated circuits for computing and communications," said Jennifer Dionne, associate professor of materials science and engineering and senior author on the paper describing this work, published July 24 in Nature Communications. "Achieving compact, efficient photonic diodes is paramount to enabling next-generation computing, communication and even energy conversion technologies."
At this point, Dionne and Lawrence have designed the new photon diode and checked their design with computer simulations and calculations. They've also created the necessary nanostructures - the custom smaller-than-microscopic components - and are installing the light source that they hope will bring their theorized system to life.
"One grand vision is to have an all-optical computer where electricity is replaced completely by light and photons drive all information processing," Lawrence said. "The increased speed and bandwidth of light would enable faster solutions to some of the hardest scientific, mathematical and economic problems."
Spinning light, breaking laws
The main challenges of a light-based diode are two-fold. First, following the laws of thermodynamics, light should move forward through an object with no moving parts in the exact same way it would move backward. Making it flow in one direction requires new materials that overturn this law, breaking what's known as time-reversal symmetry. Second, light is much more difficult to manipulate than electricity because it doesn't have charge.
Other researchers have previously tackled these challenges by running light through a polarizer - which makes the light waves oscillate in a uniform direction - and then through a crystalline material within a magnetic field, which rotates the polarization of light. Finally, another polarizer matched to that polarization ushers the light out with near-perfect transmission. If light is run through the device in the opposite direction, no light gets out.
Lawrence described the one-way action of this three-part setup, known as a Faraday isolator, as similar to taking a moving sidewalk between two doors, where the sidewalk plays the role of the magnetic field. Even if you tried to go backward through the last door, the sidewalk would usually prevent you from reaching the first door.
In order to produce a strong enough rotation of the light polarization, these kinds of diodes must be relatively large - much too large to fit into consumer computers or smartphones. As an alternative, Dionne and Lawrence came up with a way of creating rotation in crystal using another light beam instead of a magnetic field. This beam is polarized so that its electrical field takes on a spiral motion which, in turn, generates rotating acoustic vibrations in the crystal that give it magnetic-like spinning abilities and enable more light to get out. To make the structure both small and efficient, the Dionne lab relied on its expertise in manipulating and amplifying light with tiny nano-antennas and nanostructured materials called metasurfaces.
The researchers designed arrays of ultra-thin silicon disks that work in pairs to trap the light and enhance its spiraling motion until it finds its way out. This results in high transmission in the forward direction. When illuminated in the backwards direction, the acoustic vibrations spin in the opposite direction and help cancel out any light trying to exit. Theoretically, there is no limit to how small this system could be. For their simulations, they imagined structures as thin as 250 nanometers. (For reference, a sheet of paper is about 100,000 nanometers thick.)
What's possible
Big picture, the researchers are particularly interested in how their ideas might influence the development of brain-like computers, called neuromorphic computers. This goal will also require additional advances in other light-based components, such as nanoscale light sources and switches.
"Our nanophotonic devices may allow us to mimic how neurons compute - giving computing the same high interconnectivity and energy efficiency of the brain, but with much faster computing speeds," Dionne said.
"We can take these ideas in so many directions," Lawrence said. "We haven't found the limits of classical or quantum optical computing and optical information processing. Someday we could have an all-optical chip that does everything electronics do and more."
###
To read all stories about Stanford science, subscribe to the biweekly Stanford Science Digest.
Dionne is also a member of Stanford Bio-X, an affiliate of the Precourt Institute for Energy and a member of the Wu Tsai Neurosciences Institute at Stanford.
This research was funded by the Air Force Office of Scientific Research, the National Science Foundation, and the Alfred P. Sloan Foundation.
####
For more information, please click here
Contacts:
Taylor Kubota
650-724-7707
Copyright © Stanford University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Optical computing/Photonic computing
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Programmable electron-induced color router array May 14th, 2025
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Military
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Photonics/Optics/Lasers
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |