Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Caught in the act: Images capture molecular motions in real time

Researchers imaged subtle motions of a molecule known as N-methyl morpholine when excited by UV light.

CREDIT
Brown University / SLAC
Researchers imaged subtle motions of a molecule known as N-methyl morpholine when excited by UV light. CREDIT Brown University / SLAC

Abstract:
Researchers have used ultra-high-speed x-ray pulses to make a high-resolution "movie" of a molecule undergoing structural motions. The research, published in Nature Chemistry, reveals the dynamics of the processes in unprecedented detail -- capturing the excitation of a single electron in the molecule.

Caught in the act: Images capture molecular motions in real time

Providence, RI | Posted on July 15th, 2019

The ability to see molecular motions in real time offers insights into chemical dynamics processes that were unthinkable just a few decades ago, the researchers say, and may ultimately help in optimizing reactions and designing new types of chemistry.

"For many years, chemists have learned about chemical reactions by essentially studying the molecules present before and after a reaction has occurred," said Brian Stankus, a recent Ph.D. graduate from Brown University and co-lead author on the paper. "It was impossible to actually watch chemistry as it happens because most molecular transformations happen very quickly. But ultrafast light sources like the one we used in this experiment have enabled us to measure molecular motions in real time, and this is the first time these sorts of subtle effects have been seen with such clarity in an organic molecule of this size."

The work is a collaboration between chemists from Brown, scientists at SLAC National Accelerator Laboratory and theoretical chemists from the University of Edinburgh in the U.K. The team was led by Peter Weber, professor of chemistry at Brown.

For the study, the researchers looked at the molecular motions that occur when the organic molecule N-methyl morpholine is excited by pulses of ultraviolet light. X-ray pulses from SLAC's Linac Coherent Light Source (LCLS) were used to take snapshots at different stages of the molecule's dynamic response.

"We basically hit the molecules with UV light, which initiates the response, and then fractions of a second later we take a "picture" -- actually we capture a scattering pattern -- with an x-ray pulse," Stankus said. "We repeat this over and over, with different intervals between the UV pulse and x-ray pulse to create a time-series."

The x-rays scatter in particular patterns depending on the structure of molecules. Those patterns are analyzed and used to reconstruct a shape of the molecule as the molecular motions unfold. That pattern analysis was led by Haiwang Yong, a graduate student at Brown and the study's co-lead author.

The experiment revealed an extremely subtle reaction in which only a single electron becomes excited, causing a distinct pattern of molecular vibrations. The researchers were able to image both the electron excitation and the atomic vibration in fine detail.

"This paper is a true milestone because for the first time, we were able to measure in great clarity the structure of a molecule in an excited state and with time resolution," said Weber, the study's corresponding author.

"Making these types of nearly noise free measurements in both energy and time is no small feat," said Mike Minitti, a senior staff scientist at SLAC and study co-author. "Over the past seven years, our collaboration has learned a great deal on how best to use the various LCLS diagnostics to precisely measure the small fluctuations in X-ray intensities, and to an even greater extent, track the femtosecond timescale changes the molecules evolve on. All of this has informed the development of custom data analysis routines that virtually eliminate pesky, unwanted signals to our data. These results demonstrate the fidelity we can achieve."

A particularly interesting aspect of the reaction, the researchers say, is that it's coherent -- meaning when groups of these molecules interact with light, their atoms vibrate in concert with each other.

"If we can use experiments like this one to study how exactly light can be used to direct the collective motion of billions of molecules, we can design systems that can be coherently controlled," Stankus said. "Put simply: If we understand exactly how light directs molecular motions, we can design new systems and control them to do useful chemistry."

###

Other coauthors on the paper were Nikola Zotev, Jennifer Ruddock, Darren Bellshaw, Thomas J. Lane, Mengning Liang, Sébastien Boutet, Sergio 5 Carbajo, Joseph S. Robinson, Wenpeng Du, Nathan Goff, Yu Chang, Jason E. Koglin and Adam Kirrander. The research was supported by U.S. Department of Energy (DE-SC0017995) and the Army Research Office (W911NF-17-1-0256). Use of the LCLS was supported by the Department of Energy (DE-AC02-76SF00515)

####

For more information, please click here

Contacts:
Kevin Stacey

401-863-3766

Copyright © Brown University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Chemistry

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project