Home > Press > Nanotechnology delivers hepatitis B vaccine: X-ray imaging shows that nanostructured silica acts as a protective vehicle to deliver intact antigen to the intestine so that it can trigger an immune response. The material can give rise to a polyvaccine against six diseases
Abstract:
Brazilian and European researchers have demonstrated exactly how a nanotechnology-based compound delivers an oral vaccine against hepatitis B to the immune system. When particles containing silica and an antigen combine, even though they are different sizes, they reach the intestine without being destroyed by the acidity of the digestive system.
A compound of nanostructured SBA-15 silica and HBsAg, the hepatitis B surface antigen, was submitted to different types of X-ray imaging in European laboratories.
The nanostructured silica was developed by researchers at the University of São Paulo's Physics Institute (IF-USP) in Brazil. The antigen was created by the Butantan Institute, which is also in São Paulo.
The study was supported by São Paulo Research Foundation - FAPESP and European research funders. The results are published in Scientific Reports.
The aim of the study was to understand how 22 nanometers-sized antigen binds to silica nanotubes with a diameter of approximately 10 nanometers and a honeycomb-like structure. One nanometer (1 nm) is a billionth of a meter.
Studies carried out at USP revealed the measurements of both the antigen and the silica nanotubes using small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and transmission electron microscope.
"Despite the size difference, tests [in animals] produced an excellent immune response to the oral vaccine - as good as the injectable form or better," said Márcia Fantini, Full Professor at IF-USP.
X-ray and neutron imaging was coordinated by Heloisa Bordalo, a Brazilian researcher at the University of Copenhagen's Niels Bohr Institute in Denmark. In collaboration with other researchers in Denmark as well as colleagues in France, Germany, Sweden and Switzerland, Bordalo submitted the compound to small-angle X-ray scattering (SAXS), among other techniques.
The three-dimensional images obtained by these techniques showed that although the antigen did not enter the nanotubes, it was retained in 50 nm macropores between the nanotubes. This protected it from the acidity of the digestive system.
The images also enabled the researchers to determine the ideal proportion of silica and HBsAg so that the antigen did not agglomerate, hindering the dispersion of the active principle in the patient's intestine.
"The oral and intranasal routes are natural modes of vaccine administration. Nature is the best vaccination agent. However, a vaccine that contains a protein, as in this case, is destroyed by high acidity and its own proteases in passing through the stomach, so it doesn't reach the immune system, particularly the small intestine," said Osvaldo Augusto Sant'Anna, Scientific Leader at Butantan Institute and responsible for development of the HbsAg antigen.
Before proceeding to clinical trials, the team will test polymers that can be used to coat the entire structure and increase the medication's resistance to the human stomach. In animal trials, the formulation proved to be as effective as the injected vaccine, if not more so, in delivering the antigen to the intestine, where the immune system can detect it and produce antibodies against the virus.
According to the World Health Organization (WHO), approximately 257 million people currently live with hepatitis B worldwide.
Polyvaccine
Through a project supported by FAPESP, the group led by Sant'Anna, Fantini and Bordalo is now developing new antigens to add to the compound. The idea is to have at least a triple vaccine by adding other antigens against diphtheria and tetanus.
However, the formulation may evolve to become a polyvaccine that also immunizes people against whooping cough, poliomyelitis and Haemophilus influenzae type B (Hib), the bacterium that causes meningitis and pneumonia, among other diseases.
The antigens must combat the diseases without interfering with each other. "There have been very interesting results with diphtheria, and we're now going to test it for tetanus, initially in injectable form," Sant'Anna said.
####
About FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO
About São Paulo Research Foundation (FAPESP)
The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at http://www.fapesp.br/en and visit FAPESP news agency at http://www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe .
For more information, please click here
Contacts:
Joao Carlos Silva
55-113-838-4381
Copyright © FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Imaging
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||