Home > Press > University of Aberdeen use the Deben CT5000 to observe compressive damage mechanisms in syntactic foam
Abstract:
Deben, a leading provider of in-situ testing stages together with innovative accessories and components for microscopy, reports on how the University of Aberdeen’s School of Engineering use X-ray microcomputed tomography to observe syntactic foam and its compressive damage mechanisms using the Deben CT5000 μXCT stage.
In recent work the School of Engineering at the University of Aberdeen carried out in situ experiments to study the failure mechanisms of syntactic foam, using both X-ray microcomputed tomography with uniaxial compression. X-ray microcomputed tomography was used to image the foam whilst it was under compressive strain to obtain 3D images of the internal microstructure and the changes that occurred.
The material studied (polymer matrix syntactic foams) is a low-density composite material. The foam is made by randomly filling hollow particles into a material matrix and is categorised as closed-cell, this is due to fact that the particles are not connected and that each pore is enclosed in the matrix. The properties of syntactic foams are highly influenced by hollow particles. Syntactic foam microstructure is determined by the particle; material, volume fraction and wall thickness. Commonly the hollow particles in polymer matrix syntactic foams are fabricated from glass, ceramic, carbon and fly ash cenospheres. A real life application of syntactic foams is their use as insulation in the offshore oil industry. The foam helps combat the cooler temperatures and higher pressure during the extraction of oil from further out at sea or at greater depths.
The material used during these studies was syntactic foam which was provided by Trelleborg (a global engineering group focused on polymer technology). The foam featured hollow glass spheres embedded within an epoxy matrix. Prismatic blocks were machined from a bar measuring 10x10x10mm³. To ensure flat surfaces and to reduce stress concentrations the surfaces of the specimen were ground using abrasive paper.
The X-ray microcomputed tomography was carried out on the ZEISS VersaXRM-410. A microtension/compression testing stage was mounted to the X-ray machines stage. The experimental configuration can be seen in Figure 1. The sample was loaded into the Deben CT5000 inside the 3mm vitreous glassy carbon tube. The dimensions of the sample were carefully determined to ensure that the load needed to reach beyond the elastic limited would not exceed the loadcells capacity. The dimensions also ensured that there was satisfactory X-ray transmission to obtain high-resolution images. The samples were subjected to unconstrained, uniaxial, quasi-static compression test and scanned at various different levels of strain. The sample was placed within the grips of the testing machine and was secured at the top and bottom. The top grip remained stationary and the bottom grip moved up to compress the sample. The strain was held constant during each scan and then increased up before the next scan was taken. The Deben stage control software allowed the applied load and displacement to be controlled.
####
About Deben
Deben are a precision engineering company, established in 1986. They specialise in the field of in-situ tensile testing, motion control and specimen cooling for microscopy applications. The main product groups include: motor control systems, in-situ micro-tensile stages, Peltier heating & cooling stages, detectors for SEMs and electro-static beam blankers. The company also makes custom and OEM versions of these products to specifically meet customer requirements.
Deben provide consultancy, design and prototype manufacturing services. In house facilities include SolidWorks and SolidEdge 3D CAD and COSMOS finite element analysis software, CNC machining, electronics design and manufacture and software design using Visual C++, Microsoft.net and DirectX.
Deben UK Ltd. is a subsidiary company of UK based Judges Scientific plc.
For more information, please click here
Contacts:
Deben UK Limited
Brickfields Business Park
Old Stowmarket Road
Woolpit, Bury St Edmunds
Suffolk IP30 9QS, UK
T +44 (0)1359 244870
www.deben.co.uk
Written by: Abigail Royal (Sales and Marketing Administrator)
Sales Contact: Paul Gadsby (Sales Director)
Copyright © Deben
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||