Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanotubes enable travel of Huntington's protein: Rhes protein makes its own road to convey disease drivers

Scripps Research neuroscientists Srinivasa Subramaniam, PhD, and Manish Sharma, PhD, review confocal microscope images of the Huntington's protein moving between neurons via nanotube.

CREDIT
Courtesy Scripps Research
Scripps Research neuroscientists Srinivasa Subramaniam, PhD, and Manish Sharma, PhD, review confocal microscope images of the Huntington's protein moving between neurons via nanotube. CREDIT Courtesy Scripps Research

Abstract:
A toxic protein linked to Huntington's disease can move from neuron to neuron through a nanotube tunnel whose construction is initiated by a protein called Rhes, say scientists at Scripps Research.

Nanotubes enable travel of Huntington's protein: Rhes protein makes its own road to convey disease drivers

Jupiter, FL | Posted on May 10th, 2019

The finding, by Scripps Research neuroscientist Srinivasa Subramaniam, PhD, improves understanding of how and why this disease attacks and destroys certain brain cells. The research was published Friday, May 10 in the Journal of Cell Biology.

"We are excited about this result because it may explain why the patient gets the disease in this area of the brain called the striatum," says Subramaniam, an associate professor in the Department of Neuroscience at Scripps Research-Florida.

People with Huntington's disease inherit a damaged protein that is somehow complicit in destroying brain cells. Scientists discovered this protein in 1993 but are still piecing together its role in this degenerative disease. Scans show Huntington's disease brains are shrunken and degraded. As the neurons deteriorate, people lose motor control, they can have emotional problems and their thinking and memory suffer. Symptoms usually begin around age 30 to 40 and last 15 to 20 years until death. A rarer and more aggressive form of the disease affects children, cutting their childhood and lives short.

About 3 to 7 people out of 100,000 have the disease and it has mostly affected those with European ancestry. However, Subramaniam believes the disease is underreported in other areas, including India.

"There is a lot of stigma associated with the disease," says Subramaniam.

His laboratory investigates the molecular mechanics of Huntington's disease and other neurodegenerative illnesses, including Alzheimer's and Parkinson's disease, to find potential therapy targets.

"In the case of Huntington's, the question is can we block this transport, and does it have any benefit or effect?" says Subramaniam.

For this study, Subramaniam and colleague Manish Sharma, PhD, looked at mouse neurons under a confocal microscope and saw that the cells formed sticky, string-like protrusions around 150 microns long which floated above the cells, connecting them.

"When I saw Rhes making these tunnel-like tubes between the cells I was excited and at the same time perplexed," says Sharma, the first author of the study.

"They may have been missed before because they are on a different plane," says Subramaniam. "You have to be really looking for it. It's like a bridge over a lake. If you are on the lake, you may not see the bridge above, but if you are on shore, you can see the bridge."

Scientists first described another type of tunneling nanotube in rat neurons in 2004. Since then, a number of researchers have observed them in cancer and other types of cells. But how they form and what they do was less clear.

To find out, Subramaniam and Sharma tracked cell cargo moving through this tunnel bridge. They inserted the Huntington human disease protein into the mouse brain cells, tagged it with fluorescence and then watched as it crossed over and crawled up to enter the neighboring cell. Once the tunnel delivered its shipment it released and sprang back. Lysosomes and endosomes, cellular cargo bins that transport cell pieces or waste, also travel these intercellular highways, Subramaniam says.

The Rhes protein exists in both mouse and human brains sick with Huntington's disease. Knocking out the Rhes gene in diseased mice results in less brain damage. In 2009 study, Subramaniam found that Rhes also alters the Huntington disease protein's structure making it more toxic to brain cells.

"The Rhes protein makes its own road. That is what is surprising to us," says Subramaniam. "But it not only transports itself. Once the road is made, many things can be transported."

Subramaniam's group continues to investigate what other proteins may be helping with tunnel construction and if other disease proteins move along these membranous highways. His laboratory is also developing ways to identify how the Huntington's disease protein travels in the live brain.

####

About Scripps Research Institute
Scripps Research is ranked the most influential scientific institution in the world for its impact on innovation. A nonprofit, bicoastal research organization, Scripps expands basic knowledge in the biosciences and uses these fundamental advancements to develop profound innovations that improve well-being. Scripps researchers lead breakthrough studies that address the world's most pressing health concerns, accelerating the creation and delivery of medical breakthroughs to better human health across the globe. Our educational and training programs mold talented and committed students and postdocs into the next generation of leading scientists.

For more information about Scripps Research visit http://www.scripps.edu . Follow @ScrippsResearch on Twitter, Facebook or LinkedIn.

For more information, please click here

Contacts:
Stacey Singer DeLoye

561-228-2551

Copyright © Scripps Research Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project