Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New microscopy method provides more details about nanocomposites

HAADF-S/TEM imaging of aqueous Poloxamer gal-based nanocomposites with the fluid cell in situ.
Left: Nanoparticles as small as ~6 nm are clearly seen in a surrounding thick gel matrix. Right:
Intensity line scan of a random single particle dispersed in gel. SNR=5 corresponds to the Rose
criteria threshold for visibility of nanoparticles.
HAADF-S/TEM imaging of aqueous Poloxamer gal-based nanocomposites with the fluid cell in situ. Left: Nanoparticles as small as ~6 nm are clearly seen in a surrounding thick gel matrix. Right: Intensity line scan of a random single particle dispersed in gel. SNR=5 corresponds to the Rose criteria threshold for visibility of nanoparticles.

Abstract:
Scientists at the U.S. Department of Energy's Ames Laboratory have developed a new microscopy approach for imaging gel nanocomposites in their natural state, which will reveal more useful information about their assembly and properties.

New microscopy method provides more details about nanocomposites

Ames, IA | Posted on April 12th, 2019

Researchers are excited about imaging nanoparticles in poloxamers, a group of oddly-behaving polymer materials that are liquid at low temperature and a gel at higher temperatures. Because of their interesting phase behavior, these gels show promise in potentially acting as a matrix medium for arrangement of nanoparticles within these gels to obtain materials with interesting optical properties. However, currently, it is very difficult to image nanoparticles within a gel environment.

Like the old idiom "nailing jelly to a wall," getting a close and accurate look at how these nanoparticle-and-gel systems organized themselves has proven difficult for scientists who want to learn more about their properties and how to control them.

"It's basically a goo. It's like honey when cold, and at warmer temperatures it sets into a something like Jello," said Tanya Prozorov, a scientist in Ames Laboratory's Division of Materials Sciences and Engineering. "It's a state of matter that doesn't lend itself well to the thin samples we use in TEM (transmission electron microscopy). Attempting to look at freeze-dried, thin-layer samples of the gel isn't ideal; valuable information gets lost."

Using a new approach with fluid cell scanning/transmission electron microscopy, Prozorov and her colleagues used a molecular printer to deposit miniscule (femtoliter, one quadrillionth of a liter) volumes of poloxamer combined with gold nanoparticles, and observe them under controlled temperature and humidity.

####

About Ames Laboratory
Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Laura Millsaps

Copyright © Ames Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The research is further discussed in the paper "New approach to electron microscopy imaging of gel nanocomposites in situ," authored by Alejandra Londono-Caleron, Skrikanth Nayak, Curtis L. Mosher, Surya K. Mallapragada, and Tanya Prozorov; and published in Micron:

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

UC Irvine scientists create material that can take the temperature of nanoscale objects: The technology can track small temp changes in electronic devices, biological cells August 16th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project