Home > Press > Tiny optical elements could one day replace traditional refractive lenses: High-resolution imaging applications include wide-angle cameras, miniature endoscopes
![]() |
During a single imaging session, the device can evolve from a single-focus lens to a multi-focal lens that can produce more than one image at any programmable 3D position. |
Abstract:
A Northwestern University research team has developed tiny optical elements from metal nanoparticles and a polymer that one day could replace traditional refractive lenses to realize portable imaging systems and optoelectronic devices.
The flat and versatile lens, a type of metalens, has a thickness 100 times smaller than the width of a human hair.
“This miniaturization and integration with detectors offers promise for high-resolution imaging in devices from small wide-angle cameras to miniature endoscopes,” said Teri W. Odom, who led the research. She is the Charles E. and Emma H. Morrison Professor of Chemistry in the Weinberg College of Arts and Sciences and chair of the department of chemistry.
The properties of metalenses depend on the rationally designed arrangement of nanoscale units. Metalenses have emerged as an attractive option for flat lenses but are currently limited by their static, as-fabricated properties and their complex and expensive fabrication.
For imaging operations such as zooming and focusing, however, most metalenses cannot adjust their focal spots without physical motion. One major reason, Odom said, is that the building blocks of these lenses are made of hard materials that cannot change shape once fabricated. It is difficult in any materials systems to adjust nanoscale-sized features on demand to obtain tunable focusing in metalenses.
“In this study, we demonstrated a versatile imaging platform based on fully reconfigurable metalenses made from silver nanoparticles,” said Odom, a member of Northwestern’s International Institute for Nanotechnology. “During a single imaging session, our metalens device can evolve from a single-focus lens to a multi-focal lens that can form more than one image at any programmable 3D position.”
The Northwestern team built their lenses out of an array of cylindrical silver nanoparticles and a layer of polymer patterned into blocks on top of the metal array. By simply controlling the arrangement of the polymer patterns, the nanoparticle array could direct visible light to any targeted focal points without needing to change the nanoparticle structures.
This scalable method enables different lens structures to be made in one step of erasing and writing, with no noticeable degradation in nanoscale features after multiple erase-and-write cycles. The technique that can reshape any pre-formed polymer pattern into any desirable pattern using soft masks made from elastomers.
The research was supported by the Vannevar Bush Faculty Fellowship from the Department of Defense (grant no. N00014-17-1-3023) and the Air Force Research Laboratory (agreement number FA8650-15-2-5518).
####
For more information, please click here
Contacts:
Megan Fellman
847-491-3115
Source contact:
Teri Odom
Copyright © Northwestern University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Imaging
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Tools
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Photonics/Optics/Lasers
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |