Home > Press > Exchanging information securely using quantum communication in future fiber-optic networks: New research demonstrates potential solutions as transmission networks evolve to use multicore fiber
Abstract:
Searching for better security during data transmission, governments and other organizations around the world have been investing in and developing technologies related to quantum communication and related encryption methods. Researchers are looking at how these new systems--which, in theory, would provide unhackable communication channels--can be integrated into existing and future fiber-optic networks.
Research at the National Institute of Information and Communications Technology in Japan, by a team that includes Senior Visiting Researcher Tobias A. Eriksson, holds promise for solving one of the key challenges for this application: how to achieve secure communication using continuously variable quantum key distribution. Often abbreviated as QKD, this method is the ongoing exchange of encryption keys, generated with quantum technology, for encrypting data being transferred between two or more parties.
In a paper to be presented at the OFC: The Optical Fiber Communications Conference and Exhibition being held 3-7 March in San Diego, Calif., U.S.A., Eriksson and his colleagues say the primary stumbling block for this application is noise generated by fiber amplifiers on current generation single-mode fiber systems. Their research involved exploring how to exploit multicore fiber-optic technology that is expected to be used in future transmission networks.
As the name suggests, multicore fiber-optic systems use multiple fiber cores in a single strand through which data can be transmitted. In today's fiber networks, each strand usually has only one core.
"Secure communication is one of the hardest challenges right now and many of the current encryption methods may someday easily be broken by algorithms designed for quantum computers," Eriksson says. "One reason we haven't seen commercial deployment of QKD is that the technology is not compatible with current network architecture."
As multicore fiber begins to be deployed in the future, Eriksson said, researchers are looking at how that technology could be harnessed to solve the encryption problem.
"The question we asked ourselves is whether the spatial dimensions of multicore fibers can be exploited for co-propagation of classical and quantum signals," Eriksson said. "What we found is that the classical channels can be transmitted completely oblivious of the quantum signals, which in single-mode fiber is not possible since the amplifier noise kills the quantum channels."
Eriksson's team measured the excess noise from crosstalk between the classical and the quantum channels, using 19-core fiber. They found that this approach has the potential to support 341 QKD channels, with 5 GHz spacing between wavelengths of 1537 nm and 1563 nm.
The team's technical results are outlined in a paper to be presented in San Diego at the OFC meeting. The group reported that when the quantum channels are using a dedicated core of a multicore fiber, network operators can avoid the noise generated by core-to-core crosstalk by making sure that the wavelengths of the quantum signals from QKD lie in the guard-band between the classical channels that carry data. This simple solution solves the problem of multiplexing of quantum and classical channels and avoids introducing new components for the classical communication channels.
###
Hear from the research team: "Inter-core Crosstalk Impact of Classical Channels on CV-QKD in Multicore Fiber Transmission" by Tobias A. Eriksson, Benjamin J. Puttnam, Georg Rademacher, Ruben S.
Luis, Masahiro Takeoka, Yoshinari Awaji, Masahide Sasaki, Naoya Wada will take place at 8:00 a.m. on Thursday, 7 March in Room 9 of the San Diego Convention Center.
####
About The Optical Society
About OFC
The Optical Fiber Conference and Exhibition (OFC) is the largest global conference and exhibition for optical communications and networking professionals. For more than 40 years, OFC has drawn attendees from all corners of the globe to meet and greet, teach and learn, make connections and move business forward.
OFC includes dynamic business programming, an exhibition of more than 700 companies, and high impact peer-reviewed research that, combined, showcase the trends and pulse of the entire optical networking and communications industry. OFC is managed by The Optical Society (OSA) and co-sponsored by OSA, the IEEE Communications Society (IEEE/ComSoc), and the IEEE Photonics Society. OFC 2019 will be held from 3-7 March 2019 at the San Diego Convention Center, California, USA. Follow @OFCConference, learn more at OFC Community LinkedIn, and watch highlights on OFC YouTube.
For more information, please click here
Contacts:
Bill Schulz
202-416-1443
Leah Wilkinson
Copyright © The Optical Society
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Quantum communication
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024
Wireless/telecommunications/RF/Antennas/Microwaves
HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Events/Classes
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||