Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Avoiding the Crack of Doom: New imaging technique reveals how mechanical damage begins at the molecular scale

The researchers compared calculated images of single molecules in different orientations (left) with experimental ones (right) to determine the 3D alignment of the fluorescent molecules in a sample. 1 µm is one micrometer, about 1/100th the width of a human hair.

Credit: NIST
The researchers compared calculated images of single molecules in different orientations (left) with experimental ones (right) to determine the 3D alignment of the fluorescent molecules in a sample. 1 µm is one micrometer, about 1/100th the width of a human hair. Credit: NIST

Abstract:
Just as a journey of 1,000 miles begins with a single step, the deformations and fractures that cause catastrophic failure in materials begin with a few molecules torn out of place. This in turn leads to a cascade of damage at increasingly larger scales, culminating in total mechanical breakdown. That process is of urgent interest to researchers studying how to build high-strength composite materials for critical components ranging from airplane wings and wind-turbine blades to artificial knee joints.

Avoiding the Crack of Doom: New imaging technique reveals how mechanical damage begins at the molecular scale

Gaithersburg, MD | Posted on February 25th, 2019

Now scientists from the National Institute of Standards and Technology (NIST) and their colleagues have devised a way to observe the effects of strain at the single-molecule level by measuring how an applied force changes the three-dimensional alignment of molecules in the material.

The technique uses single-molecule, super-resolution optical microscopy, which can resolve objects in the range of 20 nanometers (billionths of a meter)—about one-tenth the size of what can be seen at the sharpest focus with a conventional optical microscope. The new method examines a polymer doped with fluorescent molecules that emit light of one wavelength when they are illuminated with light of another wavelength. An image of the emitted light reveals not only a molecule’s location, but also its orientation horizontally and vertically.

The super-resolution microscope, development of which won the 2014 Nobel Prize in Chemistry, has been widely employed for biomedical applications. “But we started wondering what you could do with it in the materials area,” said NIST scientist J. Alexander Liddle. “That is, how can we see what is happening at the molecular level at the very earliest stages of deformation or damage? If those mechanisms can be understood, researchers may be able to design better composite materials that can inhibit failure.”

Composite materials are used throughout industry to increase strength and decrease weight. For example, half the material by weight in a Boeing 787 airframe is carbon fiber-reinforced plastic and other composites.

For many such materials, it is difficult to see the early onset of damage because there are no visible markers to track its effects. To provide those markers in their experiment, the researchers used a very thin film of a polymer found in Lucite and Plexiglas that had been doped with thousands of fluorescent molecules. Initially, the polymer was unstressed, and the embedded fluorescent molecules were in completely random orientations in three dimensions. Then the scientists applied force to the polymer, deforming it in a controlled specific direction. As the polymer was strained, the embedded fluorescent molecules were carried along with the deformation, losing their random orientation and lining up with the path of the damage. That path was made visible by observing the pattern of emitted light from the embedded fluorescent molecules, which acted like a series of little flashlights pointing the way.

Prior to the experiment, the scientists used a mathematical model that predicted how light would look when emitted by molecules in different 3D alignments. When they illuminated the fluorescent molecules and made images of the emitted light, the results matched the model. After about 10,000 cycles of illumination, a telltale pattern emerged showing the extent of deformation.

“It’s sort of like a pointillist painting, where individual dots build up to form a shape,” Liddle said.

In addition to the technique’s clear relevance to the design of essential composite materials, there might also be applications in medicine.

“Let’s say you have a new bioimplant—for example, a knee replacement,” said Mitchell Wang, now at Northwestern University, who worked on the experiment while at NIST. “To make it biocompatible, it will likely be made of soft polymers, but you also want the device to have excellent mechanical properties. You want it to operate easily while also being stiff and tough. This technique could help inform design so the materials used have excellent mechanical strength.”

There are many avenues for future research. “This technique was a post-mortem study, in that we could view the damage in a material after it already happened,” Wang said. “The next step might be to learn how to perform this work in real time, to watch not only where the damage is happening, but when.”

Liddle’s team is also developing an improved imaging technique. It involves making two simultaneous image sets—one on each side of the doped polymer. On one side, imaging is produced by the method described above. On the other, a separate lens gathers fluorescent light from the material and divides it into four different polarizations in individual channels. Because the polarization of the emitted light is affected by the orientation of the fluorescent molecules, “if you measure the ratios of the intensity in each channel, you can figure out which direction the molecule is pointing,” Liddle said. “That would give us an independent measure of orientation.”

In addition, the scientists hope to improve resolution by a factor of about five—allowing them to image areas as small as a few nanometers. This could be accomplished by increasing the brightness of the fluorescent molecules, perhaps by reducing their exposure to oxygen, which shuts off fluorescence.

Meanwhile, Liddle said, “it still amazes me that I can look at this little bright spot in a microscope and know within five or ten nanometers where it is and also know, within a few degrees, in which direction it’s pointing.”

In addition to NIST scientists, researchers at the University of Maryland NanoCenter contributed to the experiment and journal article.

####

For more information, please click here

Contacts:
MEDIA CONTACT
Ben P. Stein

(301) 975-2763
TECHNICAL CONTACT
James Alexander Liddle

(301) 975-6050

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper: M. Wang, J.M Marr, M. Davanco, J.W. Gilman and J.A. Liddle. Nanoscale deformation in polymers revealed by single-molecule super-resolution location – orientation microscopy. Materials Horizons. Published online January 30, 2019. DOI: 10.1039/c8mh01187g:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Aerospace/Space

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project