Home > Press > A quantum magnet with a topological twist: Materials with a kagome lattice pattern exhibit 'negative magnetism' and long-sought 'flat-band' electrons
![]() |
Researchers explored a material that has an internal structure, shown in 3D in left panel, that consists of triangles and hexagons arranged in a pattern similar to that of a Japanese kagome basket. CREDIT Hasan, et. al, Princeton University |
Abstract:
Taking their name from an intricate Japanese basket pattern, kagome magnets are thought to have electronic properties that could be valuable for future quantum devices and applications. Theories predict that some electrons in these materials have exotic, so-called topological behaviors and others behave somewhat like graphene, another material prized for its potential for new types of electronics.
Now, an international team led by researchers at Princeton University has observed that some of the electrons in these magnets behave collectively, like an almost infinitely massive electron that is strangely magnetic, rather than like individual particles. The study was published in the journal Nature Physics this week.
The team also showed that placing the kagome magnet in a high magnetic field causes the direction of magnetism to reverse. This "negative magnetism" is akin to having a compass that points south instead of north, or a refrigerator magnet that suddenly refuses to stick.
"We have been searching for super-massive 'flat-band' electrons that can still conduct electricity for a long time, and finally we have found them," said M. Zahid Hasan, the Eugene Higgins Professor of Physics at Princeton University, who led the team. "In this system, we also found that due to an internal quantum phase effect, some electrons line up opposite to the magnetic field, producing negative magnetism."
The team explored how atoms arranged in a kagome pattern in a crystal give rise to strange electronic properties that can have real-world benefits, such as superconductivity, which allows electricity to flow without loss as heat, or magnetism that can be controlled at the quantum level for use in future electronics.
The researchers used state-of-the-art scanning tunneling microscopy and spectroscopy (STM/S) to look at the behavior of electrons in a kagome-patterned crystal made from cobalt and tin, sandwiched between two layers of sulfur atoms, which are further sandwiched between two layers of tin.
In the kagome layer, the cobalt atoms form triangles around a hexagon with a tin atom in the center. This geometry forces the electrons into some uncomfortable positions - leading this type of material to be called a "frustrated magnet."
To explore the electron behavior in this structure, the researchers nicked the top layers to reveal the kagome layer beneath.
They then used the STM/S technique to detect each electron's energy profile, or band structure. The band structure describes the range of energies an electron can have within a crystal, and explains, for example, why some materials conduct electricity and others are insulators. The researchers found that some of electrons in the kagome layer have a band structure that, rather than being curved as in most materials, is flat.
A flat band structure indicates that the electrons have an effective mass that is so large as to be almost infinite. In such a state, the particles act collectively rather than as individual particles.
Theories have long predicted that the kagome pattern would create a flat band structure, but this study is the first experimental detection of a flat band electron in such a system.
One of the general predictions that follows is that a material with a flat band may exhibit negative magnetism.
Indeed, in the current study, when the researchers applied a strong magnetic field, some of the kagome magnet's electrons pointed in the opposite direction.
"Whether the field was applied up or down, the electrons' energy flipped in the same direction, that was the first thing that was strange in terms of the experiments," said Songtian Sonia Zhang, a graduate student in physics and one of three co-first-authors on the paper.
"That puzzled us for about three months," said Jia-Xin Yin, a postdoctoral research associate and another co-first author on the study. "We were searching for the reason, and with our collaborators we realized that this was the first experimental evidence that this flat band peak in the kagome lattice has a negative magnetic moment."
The researchers found that the negative magnetism arises due to the relationship between the kagome flat band, a quantum phenomenon called spin-orbit coupling, magnetism and a quantum factor called the Berry curvature field. Spin-orbit coupling refers to a situation where an electron's spin, which itself is a quantum property of electrons, becomes linked to the electron's orbital rotation. The combination of spin-orbital coupling and the magnetic nature of the material leads all the electrons to behave in lock step, like a giant single particle.
Another intriguing behavior that arises from the tightly coupled spin-orbit interactions is the emergence of topological behaviors. The subject of the 2016 Nobel Prize in Physics, topological materials can have electrons that flow without resistance on their surfaces and are an active area of research. The cobalt-tin-sulfur material is an example of a topological system.
Two-dimensional patterned lattices can have other desirable types of electron conductance. For example, graphene is a pattern of carbon atoms that has generated considerable interest for its electronic applications over the past two decades. The kagome lattice's band structure gives rise to electrons that behave similarly to those in graphene.
###
Funding for this study was provided the Gordon and Betty Moore Foundation, the United States Department of Energy under the Basic Energy Sciences program, the Princeton Center for Theoretical Science and the Princeton Institute for the Science and Technology of Materials Imaging and Analysis Center at Princeton University, Lawrence Berkeley National Laboratory, and the University of California, Berkeley.
####
For more information, please click here
Contacts:
Catherine Zandonella
609-258-0541
Copyright © Princeton University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Quantum Physics
2 Dimensional Materials
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Magnetism/Magnons
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Imaging
Turning up the signal November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Laboratories
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Tools
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Turning up the signal November 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Research partnerships
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Quantum nanoscience
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |