Home > Press > Light up logic: Engineers from UTokyo and RIKEN perform computational logic with light
![]()  | 
| Columnar liquid crystals are similar in size to current semiconductor transistors. CREDIT (c)2019 Aida Group | 
Abstract:
For the first time, researchers performed logic operations -- the basis of computation -- with a chemical device using electric fields and ultraviolet light. The device and the pioneering methods used open up research possibilities including low-power, high-performance computer chips.
Computers need an upgrade. From smartwatches to data centers, all computers feature similar kinds of components, including processors and memory. These semiconductor chips comprise minuscule electronic transistors on beds of silicon. Such devices cannot be made much smaller because of how matter behaves at the quantum scale they're approaching. For this reason and more, engineers devise new ways and materials to perform logic and memory functions.
Doctoral student Keiichi Yano, Lecturer Yoshimitsu Itoh and Professor Takuzo Aida from the Department of Chemistry and Biotechnology at the University of Tokyo and their team developed a device which demonstrates functions useful to computation. Conventional computers use electric charge to represent binary digits (1's and 0's), but the engineers' device uses electric fields and UV light. These allow for lower power operation and create less heat than logic based on electric charge.
The device is also vastly different from current semiconductor chips as it is chemical in nature, and it's this property that gives rise to its potential usefulness in the future of computation. It's not just the power and heat benefit; this device could be manufactured cheaply and easily too. The device features disk and rod-shaped molecules that self-assemble into spiral staircase-like shapes called columnar liquid crystals (CLC) in the right conditions.
"One thing I love about creating a device using chemistry is that it's less about 'building' something; instead it's more akin to 'growing' something," says Itoh. "With delicate precision, we coax our compounds into forming different shapes with different functions. Think of it as programming with chemistry."
Before a logic operation begins, the researchers sandwich a sample of CLCs between two glass plates covered in electrodes. Light that is polarized -- always vibrates in a single plane -- passes through the sample to a detector on the other side.
In the sample's default state, the CLCs exist in a randomly oriented state which allows the light to reach the detector. When either the electric field or UV light is individually switched on then off, the detected output remains the same. But when the electric field and UV light are switched on together and then off again after about a second, the CLCs line up in a way which blocks the detector from the light.
If the "output" states of light and dark, and the "input" states of the electric field and UV light are all assigned binary digits to identify them, then the process has effectively performed what is called a logical AND function -- all inputs to the function must be "1" for the output to be "1."
"The AND function is one of several fundamental logic functions, but the most important one for computation is the NOT-AND or NAND function. This is one of several areas for further research," explains Yano. "We also wish to increase the speed and density of the CLCs to make them more practical for use. I'm fascinated by how self-assembling molecules like those we use to make the CLCs give rise to phenomena such as logical functions."
####
About University of Tokyo
The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 2,000 international students. Find out more at https://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.
For more information, please click here
Contacts:
Research Contact
Yoshimitsu Itoh 
Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, JAPAN 
Tel: +81-3-5841-8810 
Press Contact
Mr. Rohan Mehra 
Division for Strategic Public Relations, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, JAPAN 
Tel: +81-3-5841-0876 
Copyright © University of Tokyo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links | 
 Department of Chemistry and Biotechnology, Graduate School of Engineering:
 Emergent Soft Matter Function Research Group at RIKEN:
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Chip Technology
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
    Programmable electron-induced color router array May 14th, 2025
Self Assembly
    Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
    Liquid crystal templated chiral nanomaterials October 14th, 2022
    Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022
    Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022
Optical computing/Photonic computing
    ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
    Programmable electron-induced color router array May 14th, 2025
    Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
    Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Discoveries
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Photonics/Optics/Lasers
    ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||