Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Satellite study proves global quantum communication will be possible

Abstract:
Researchers in Italy have demonstrated the feasibility of quantum communications between high-orbiting global navigation satellites and a ground station, with an exchange at the single photon level over a distance of 20,000km.

Satellite study proves global quantum communication will be possible

Washington, DC | Posted on December 28th, 2018

The milestone experiment proves the feasibility of secure quantum communications on a global scale, using the Global Navigation Satellite System (GNSS). It is reported in full today in the journal Quantum Science and Technology.

Co-lead author Dr Giuseppe Vallone is from the University of Padova, Italy. He said: "Satellite-based technologies enable a wide range of civil, scientific and military applications like communications, navigation and timing, remote sensing, meteorology, reconnaissance, search and rescue, space exploration and astronomy.

"The core of these systems is to safely transmit information and data from orbiting satellites to ground stations on Earth. Protection of these channels from a malicious adversary is therefore crucial for both military and civilian operations.

"Space quantum communications (QC) represent a promising way to guarantee unconditional security for satellite-to-ground and inter-satellite optical links, by using quantum information protocols as quantum key distribution (QKD)."

The team's results show the first exchange of a few photons per pulse between two different satellites in the Russian GLONASS constellation and the Space Geodesy Centre of the Italian Space Agency.

Co-lead author Professor Paolo Villoresi said: ""Our experiment used the passive retro-reflectors mounted on the satellites. By estimating the actual losses of the channel, we can evaluate the characteristics of both a dedicated quantum payload and a receiving ground station.

"Our results prove the feasibility of QC from GNSS in terms of achievable signal-to-noise ratio and detection rate. Our work extends the limit of long-distance free-space single-photon exchange. The longest channel length previously demonstrated was around 7,000 km, in an experiment using a Medium-Earth-Orbit (MEO) satellite that we reported in 2016."

Although high-orbit satellites pose a large technological challenge, due to losses from optical channels, Professor Villoresi explained the team's reasoning for focussing on high-orbiting satellites in their study.

He said: "The high orbital speed of low earth orbit (LEO) satellites is very effective for the global coverage but limits their visibility periods from a single ground station. On the contrary, using satellites at higher orbits can extend the communication time, reaching few hours in the case of GNSS.

"QC could also offer interesting solutions for GNSS security for both satellite-to-ground and inter-satellite links, which could provide novel and unconditionally secure protocols for the authentication, integrity and confidentiality of exchanged signals."

Dr. Giuseppe Bianco, which is the Director of the Space Geodesy Centre of the Italian Space Agency and co-author, said "The single photon exchange with a GNSS satellite is an important result for both scientific and application perspectives. It fits perfectly in the Italian roadmap for Space Quantum Communications, and it is the latest achievement of our collaboration with the University of Padua which is steadily progressing since 2003."

####

For more information, please click here

Contacts:
Simon Davies

44-011-793-01110

Copyright © IOP Publishing

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Quantum Physics

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Quantum communication

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project