Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > National Quantum Initiative Act Passes Congress

Abstract:
The University of Maryland, home to one of America’s leading quantum science and technology communities, suggested language and advocated for the National Quantum Initiative legislation that now has passed Congress with strong bipartisan support. The bill has gone to President Donald Trump for signature.

National Quantum Initiative Act Passes Congress

College Park, MD | Posted on December 24th, 2018

The National Quantum Initiative Act closely follows the National Quantum Initiative Action Plan prepared earlier this year under the guidance of University of Maryland Distinguished University Professor of Physics Christopher Monroe, CEO of the quantum computing startup IonQ, and of University of Oregon Professor of Physics Michael Raymer. Monroe and Raymer are founding stakeholders and active participants in an organization of academia and industry convened by the National Photonics Initiative, a broad-based collaborative alliance that has been working to raise awareness of the vital importance and benefits of science and technology in areas of quantum science, optics and photonics.

The National Photonics Initiative (NPI) shared the National Quantum Initiative (NQI) Action Plan with lawmakers earlier this year, and Monroe, Raymer and the NPI have been working to advance and support congressional approval of a National Quantum initiative.

“The University of Maryland played a leading role in the blueprint for this legislation, with an active role in the formation of a large and broad coalition from academics and industry, who authored the white paper and action plan for a National Quantum Initiative,” said Monroe, the Bice Sechi-Zorn Professor of physics at UMD. “In addition, I testified to the House Science Committee and House Energy Committee on NQI over several months as NQI was gathering steam.”

The U.S. House and Senate have passed the National Quantum Initiative Act, advancing the bill to the president’s desk.

The National Quantum Initiative legislation—introduced by Congressman Lamar Smith (R-TX), Congresswoman Eddie Bernice Johnson (D-TX), Senator John Thune (R-SD), Senator Bill Nelson (D-FL), Senator Lisa Murkowski (R-AK), and Senator Maria Cantwell (D-WA)—will establish a National Quantum Coordination Office inside the White House’s Office of Science and Technology Policy to help coordinate research between agencies, serve as the federal point of contact and promote private commercialization of federal research breakthroughs over the next decade. The bill authorizes $1.275 billion over 5 years for quantum information science research and development across several federal research agencies, including the Department of Energy, the National Institute of Standards and Technology, and the National Science Foundation. Funding will support the establishment of major research centers run by academic institutions, industry, government labs and others to advance quantum information science, develop cutting edge technology and train the quantum workforce of tomorrow.

“This legislation will address crucial workforce issues in quantum information technology,” says Monroe. “Quantum research at universities and national laboratories must be translated to industry to make quantum computers and other devices, and to define markets for this technology, and the government can play a crucial role in this transition. I would like to thank all members of Congress in both chambers who supported this bill, and also leadership in the White House for supporting a national quantum initiative.”

Research into Quantum Science and Technology
Exponential growth in the power of information technology – Moore’s Law – has long catalyzed U.S. productivity and economic growth. However, this growth is now slowing as the 1950s-1960s scientific breakthroughs in computer science, optics, photonics and other areas reach their technological limits.
The demise of rapid doubling of computing power known as Moore’s Law has mobilized the science and industry communities to search for radically new approaches to information processing. Advances in quantum science and quantum technologies, including many made at the University of Maryland, are based on fundamental particles of nature, such as individual atoms and photons. These advances are natural targets for new revolutions in information science because they hold great promise to become the computers, networks and sensors of tomorrow.

Quantum information science is based on exploiting subtle aspects of quantum physics, such as “quantum superposition” and “entanglement,” for valuable, real-world technologies. These technologies have the potential to tackle the hardest computational problems and enhance a wide variety of sensor- and communication-based systems.

The University of Maryland is a leader in quantum science, computer science, artificial intelligence, big data and other areas of science, technology and education that are critical to the nation’s economy and security. UMD is home to one of the world’s top quantum science and technology communities, with over 200 quantum researchers on site. UMD’s quantum science and technology partnerships and startups include:

the Joint Quantum Institute (JQI) is a partnership between UMD and the National Institute of Standards and Technology (NIST) that is based on UMD’s campus and dedicated to the broad study of quantum science from theory to experiment ;

the Joint Center for Quantum Information and Computer Science (QuICS) is a UMD-NIST initiative working to understand and enable the full promise of quantum computation, including providing quantum software to go with the quantum hardware;

a quantum-focused National Science Foundation Physics Frontier Center was first awarded to UMD in 2008 and renewed in 2014. NSF’s prestigious Physics Frontier Centers promote collaborative exploration of challenging physics questions.

the Center for Distributed Quantum Information, a collaborative effort between UMD and the U.S. Army Research Laboratory to develop quantum communication capabilities based on interfaces between quantum memory and photons;

IonQ, a quantum computing startup located in College Park and co-founded by Monroe and Jungsang Kim, an engineering professor at Duke University. IonQ builds full-stack quantum computer systems shown to be among the most powerful in the world.

####

For more information, please click here

Contacts:

Lee Tune
301-405-4679


Emily Edwards
301-405-2291

Copyright © University of Maryland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Quantum communication

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Quantum Computing

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project