Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Superfluidity: what is it and why does it matter?

Illinois physics professor and Nobel Laureate Anthony Leggett talks about the 1938 discovery of superfluidity and its significance to low-temperature physics.

Photo by L. Brian Stauffer
Illinois physics professor and Nobel Laureate Anthony Leggett talks about the 1938 discovery of superfluidity and its significance to low-temperature physics. Photo by L. Brian Stauffer

Abstract:
2018 marks the 80th anniversary of the landmark physics discovery of superfluidity. News Bureau physical sciences editor Lois Yoksoulian asked University of Illinois physics professor and 2003 Nobel Prize winner Anthony Leggett about the significance of the historic finding.

Superfluidity: what is it and why does it matter?

Champaign, IL | Posted on December 20th, 2018

What is superfluidity?

The most obvious definition of superfluidity is the ability of a liquid to flow through narrow channels without apparent friction. However, this is actually only one of a number of interesting properties. For example, if we place a liquid into a bucket and slowly rotate it while cooled into the superfluid phase, the liquid, which initially rotates with the bucket, will appear to come to rest. We call this phenomenon the Hess-Fairbank effect.

Today, superfluidity is something that we can directly observe in helium isotopes and in ultra-cold atomic gases. It is conjectured to occur in extraterrestrial systems, such as neutron stars, and there is circumstantial evidence supporting its existence in other terrestrial systems, such as excitons, which are bound electron-hole pairs found in semiconductors.

How was superfluidity discovered?

Helium-4 was liquefied in 1908, but it was only in 1936 and 1937 that scientists recognized that below the temperature of 2.17 degrees absolute – which we now call the lambda point – it possessed properties different from any other substance known at the time. In particular, the thermal conductivity of the low-temperature phase, now known as He-II, is very large, which suggests a convection mechanism, but with anomalously low viscosity.

In 1938, Pyotr Kapitza in Moscow and John Allen and Don Misener at the University of Cambridge simultaneously performed a direct measurement of the behavior of the viscosity of the helium contained in a thin tube as a function of temperature. Both groups found a drop in He-II, which appeared discontinuously at the lambda point. On the basis of the analogy with superconductivity, Kapitza coined the term superfluidity for this behavior.

What is the relationship between superfluidity and superconductivity?

According to our modern understanding, superconductivity is nothing more than superfluidity occurring in an electrically charged system. Just as a superfluid liquid can flow forever down a narrow capillary without apparent friction, so can a current, once started in a superconducting ring – or at least for a time much longer than the age of the Universe!

The analog of the Hess-Fairbank effect mentioned earlier is a bit less intuitive. The direct analog is that when a magnetic field is applied to the surface of a metal, the normal, non-superconducting state has little effect. However, when the metal is in the superconducting state, it will induce an electric current, or diamagnetism. In a thin ring, this would be the end of the story, but in a bulk sample this current induces its own magnetic field in a direction opposite to the external one, and eventually the latter is screened out of the metal completely. This is the so-called Meissner effect, and leads to spectacular phenomena such as superconducting levitation.

What types of advancements have been made as a result of understanding superfluidity?

The direct uses of superfluid helium are actually rather few. Because of its extremely high thermal conductivity, the superfluid phase of helium-4 is an excellent coolant for high-field magnets, and both isotopes have some applications as detectors of exotic particles. While there are other unique indirect applications of superfluidity, they are most useful in the development of theory and understanding high-temperature superconductivity.

####

For more information, please click here

Contacts:
LOIS YOKSOULIAN
PHYSICAL SCIENCES EDITOR
217-244-2788


Anthony Leggett

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Superconductivity

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Aerospace/Space

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project