Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Tracking a Killer: UCSB, UCSD and SBP researchers trace the complex and variable pathways to the deadly condition known as sepsis

Abstract:
A major cause of human disability and death throughout the world, sepsis is a condition that begins with an infection, progresses rapidly and can set off a chain of effects that result in multiple organ failure and irreparable damage to the body. Because of the condition’s rapid onset, physicians must respond immediately to the symptoms with broad-spectrum antibiotics for infection, drugs to combat inflammation and, in the more critical cases, vasopressors to manage shock.

Tracking a Killer: UCSB, UCSD and SBP researchers trace the complex and variable pathways to the deadly condition known as sepsis

Santa Barbara, CA | Posted on October 12th, 2018

Because sepsis is so difficult to detect in its early stages, however, little has been known about how it develops. This may explain why no new effective drugs to treat sepsis have been developed in decades, while it remains one of the leading causes of hospital deaths. Sepsis also can result in serious disabilities for those who survive.

Now, researchers at UC Santa Barbara, Sanford Prebys Medical Discovery Institute (SBP) in La Jolla, California, and UC San Diego have developed a method for tracking, on a molecular level, the development of sepsis. Their resulting discoveries could, in turn, lead to more advanced therapies for sepsis that reduce its mortality, minimize the lifelong effects for survivors or even prevent the cascade of life-threatening effects before it begins, while reducing the billions of dollars spent every year to treat the condition.

Their paper, “Accelerated Aging and Clearance of Host Anti-inflammatory Enzymes by Discrete Pathogens Fuels Sepsis” is published in the journal Cell Host & Microbe.

“Sepsis is generally thought of as one singular disease, especially as it enters late stages,” said UC Santa Barbara biology professor Jamey Marth, who is the director of the campus’s Center for Nanomedicine, in addition to being a professor at SBP. “At this point, inflammation and coagulopathy have caused the vascular and organ damage common to severe sepsis and septic shock. Our comparative approach to monitor the onset and progression of sepsis at the molecular level supports the view that there are different molecular pathways in sepsis depending on host responses to different pathogens.”

An improved sepsis model yields important findings
In contrast to previous experimental models of sepsis, which typically release multiple and incompletely identified pathogens into the bloodstream, Marth and his team developed a more quantitative method that tracked the pathogen and host over time, beginning with infection. This method generated a reproducible protocol that allowed the scientists to map host responses, in this case to five different human pathogens representing common strains and isolates from different patients.

In the study, Marth’s team found that in the onset and progression of sepsis caused by Salmonella or E. coli, a protective mechanism normally present in the host was disabled. The mechanism that the bacteria used included a means to accelerate the molecular aging and clearance of two anti-inflammatory alkaline phosphatase (AP) enzymes, called TNAP and IAP, which are normally present in the host bloodstream. This was achieved through pathogen activation of the host’s own Toll-like receptor-4 (TLR-4), and both pathogens were thus able to induce inflammatory compounds and reduce the likelihood of host survival.

The scientists found that boosting the level of protective anti-inflammatory AP activity or using neuraminidase inhibitors to block the downstream effect of TLR-4 activation on NEU1 and NEU3 induction were both highly therapeutic approaches as inflammatory markers were reduced and host survival increased — indicating a potential direction for drug development.

“It has been known that AP isozymes can reduce inflammation in the context of some diseases and pathogens — indeed AP is currently in clinical trials focused on inflammatory diseases, including colitis and sepsis,” said Won Ho Yang, Ph.D., lead author and a senior scientist in the Marth laboratory at both UCSB and SBP. “This study shows that the pathogen is interacting with the host to disable a protective response. The findings also demonstrate how both pathogen and host battle each other by altering the rates of protein aging and clearance — which itself is a newly discovered regulatory mechanism we recently reported that controls the half-lives of proteins in the blood.”

In contrast, these responses weren’t seen in infections caused by other bacteria tested, including methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae. The different host responses in this case appeared divided between Gram-positive and Gram-negative bacteria, which describes the existence or absence of an inflammatory compound found on Gram-negative strains.

“We are continuing to map and compare host responses to different pathogens in sepsis, using state-of-the-art technical approaches, and hope to ultimately stratify the disease,” said Marth, who is the Carbon Professor of Biochemistry and Molecular Biology at UC Santa Barbara, as well as the Mellichamp Chair of Systems Biology. “It’s possible that sepsis is similar to cancer, in that we now know that cancer is a not a single disease but represents hundreds of diseases at the molecular level.”

Research on this project was also conducted by Douglas M. Heithoff, Peter V. Aziz, Benjamin Haslund-Gourley and Michael J. Mahan, SBP and UC Santa Barbara; Julia S. Westman, Sonoko Narisawa, Anthony B. Pinkerton and José Luis Millán, SBP; and Victor Nizet, M.D., UC San Diego.

Research reported in this press release was supported by National Institutes of Health (NIH) Heart, Lung, and Blood Institute (HLBI) grants HL125352 and HL131474. Additional support was provided by the Swedish Research Council 2017-00192 and the Wille Family Foundation.

####

For more information, please click here

Contacts:
Sonia Fernandez
(805) 893-4765
sonia(dot)fernandez(at)ucsb(dot)edu

Copyright © University of California, Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project