Home > Press > Peering into private life of atomic clusters -- using the world's tiniest test tubes
![]() |
Abstract:
Experts in the Nanoscale and Microscale Research Centre (nmRC) at the University of Nottingham have taken a first peak into the private life of atomic clusters. Here's what they can see.
Having already succeeded in 'filming' inter-molecular chemical reactions - using the electron beam of a transmission electron microscope (TEM) as a stop-frame imaging tool they have now achieved time-resolved imaging of atomic-scale dynamics and chemical transformations promoted by metal nanoclusters. This has enabled them to rank 14 different metals both in order of their bonding with carbon and their catalytic activity, showing significant variation across the Periodic Table of Elements.
Their latest work, 'Comparison of atomic scale dynamics for the middle and late transition metal nanocatalysts', has been published in Nature Communications. Andrei Khlobystov, Professor of Nanomaterials and Director of nmRC, said: "Thanks to the recent advances in microscopy and spectroscopy we now know a great deal about the behaviour of molecules and atoms. However, the structure and dynamics of atomic-scale clusters of metallic elements remains a mystery. The complex atomic dynamics revealed directly by imaging in real time sheds light on atomistic workings of nanocatalysts."
Contribution to global GDP
The atomic-scale dynamics of metal nanoclusters determine their functional and chemical properties such as catalytic activity - their ability to increase the rate of a chemical reaction. Many key industrial processes currently rely on nanocatalysts such as water purification; fuel cell technologies; energy storage; and bio-diesel production.
Professor Khlobystov said: "With catalytic chemical reactions contributing substantially to the global GDP, understanding the dynamic behaviour of nanoclusters at the atomic level is an important and urgent task. However, the combined challenge of non-uniform structures of nanocatalysts - for example, distribution of sizes, shapes, crystal phases - coexisting within the same material and their highly dynamic nature - nanoclusters undergo extensive structural and, in some cases, chemical transformations during catalysis - makes elucidation of the atomistic mechanisms of their behaviour virtually impossible."
From single-molecule dynamics to atomic clusters
Professor Khlobystov led the Anglo-German collaboration that harnessed the impact of the electron beam (e-beam) in the transmission electron microscopy (TEM) for imaging single-molecule dynamics. By employing the e-beam simultaneously as an imaging tool and a source of energy to drive chemical reactions they succeeded at filming reactions of molecules. The research was published last year in ACS Nano, a flagship nanoscience and nanotechnology journal, and selected as ACS Editor's Choice due to its potential for broad public interest.
Instead of laboratory flasks or test tubes, they employ the World's tiniest test tubes - single walled carbon nanotubes - atomically thin cylinders of carbon with internal diameters of 1-2 nm that have held a Guinness World Record since 2005.
A Periodic Table in a nano test tube
Professor Khlobystov said: "We use these carbon nanotubes to sample tiny clusters of chemical elements, each consisting of only a few dozens of atoms. By entrapping the nanoclusters of a series of related metallic elements we effectively created in a Periodic Table in a nano test tube, allowing a global comparison of chemistry of transition metals across the Periodic Table. This has always been extremely challenging because most metal nanoclusters are highly sensitive to air. The combination of the nano test tube and TEM allows us to watch not only the dynamics of metal nanoclusters but also their bonding with carbon that show a clear link with the metal's position in the Periodic Table."
Ute Kaiser, Professor in Experimental Physics and Leader of the Group of Electron Microscopy of Materials Science at Ulm University said: "Aberration-corrected transmission electron microscopy and the low-dimensional materials, such as nanotubes filled with metal nanoclusters, are an ideal match for each other because they allow an effective combination of advances in analytical and theoretical chemistry with latest developments in electron microscopy, leading to new understanding of phenomena at the atomic scale, such as nanocatalysis in this work."
Watching nanoclusters in unprecedented resolution
Kecheng Cao, PhD student at Ulm University, who carried out image analysis in this study said: "When I am looking at atoms through the microscope, sometimes I stop breathing to see the invisible details we discover for the nanoclusters on our newly developed SALVE III microscope providing unprecedented resolution".
Elena Besley, Professor of Theoretical and Computational Chemistry at the University of Nottingham said: "Reaching inside the tiniest building blocks of metals, this study demonstrated that metal nanoclusters entrapped in carbon nano test tubes provide a universal platform for studying organometallic chemistry and enable a direct comparison of the bonding and reactivity of different transition metals as well as elucidation of the structure-performance relationship for nanocatalysts - vital for the discovery of new reaction mechanisms and more efficient catalysts of the future. This study provides a first qualitative glimpse of a global perspective of metal-carbon bonding."
This study is the latest in a series of more than 20 high-calibre joint papers on the topic of electron microscopy for molecules and nanomaterials published by the Ulm-Nottingham collaboration.
Professor Kaiser has recently been appointed an Honorary Professor at the University of Nottingham in recognition of her rich contribution to the collaboration between the two universities spanning over nearly a decade.
####
For more information, please click here
Contacts:
Lindsay Brooke
01-159-515-751
Copyright © University of Nottingham
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Videos/Movies
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Imaging
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Chemistry
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |