Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Could a demon help to create a quantum computer? Physicists implement a version of Maxwell's famous thought experiment for reducing entropy

Reducing entropy in a randomly half-filled 5x5x5 lattice of atoms. Each row shows a snapshot of the 5 planes in the lattice. The top row shows the initial random distribution of atoms among the 3D array of 125 possible sites. The second row show the distributions of atoms after the first sort and the third row shows the distribution after the second sort, at which point the target 5x5x2 sublattice is completely filled. This process reduces the entropy in the system by a factor of about 2.4.

CREDIT
Weiss Laboratory, Penn State
Reducing entropy in a randomly half-filled 5x5x5 lattice of atoms. Each row shows a snapshot of the 5 planes in the lattice. The top row shows the initial random distribution of atoms among the 3D array of 125 possible sites. The second row show the distributions of atoms after the first sort and the third row shows the distribution after the second sort, at which point the target 5x5x2 sublattice is completely filled. This process reduces the entropy in the system by a factor of about 2.4. CREDIT Weiss Laboratory, Penn State

Abstract:
Reduced entropy in a three-dimensional lattice of super-cooled, laser-trapped atoms could help speed progress toward creating quantum computers. A team of researchers at Penn State can rearrange a randomly distributed array of atoms into neatly organized blocks, thus performing the function of a "Maxwell's demon"--a thought experiment from the 1870s that challenged the second law of thermodynamics. The organized blocks of atoms could form the basis for a quantum computer that uses uncharged atoms to encode data and perform calculations. A paper describing the research appears September 6, 2018 in the journal Nature.

Could a demon help to create a quantum computer? Physicists implement a version of Maxwell's famous thought experiment for reducing entropy

University Park, PA | Posted on September 5th, 2018

"Traditional computers use transistors to encode data as bits that can be in one of two states--zero or one," said David Weiss, professor of physics at Penn State and the leader of the research team. "We are devising quantum computers that use atoms as 'quantum bits' or 'qubits' that can encode data based on quantum mechanical phenomena that allow them to be in multiple states simultaneously. Organizing the atoms into a packed 3D grid allows us to fit a lot of atoms into a small area and makes computation easier and more efficient."

The second law of thermodynamics states that the entropy--sometimes thought of as disorder--of a system cannot decrease over time. One of the consequences of this law is that it precludes the possibility of a perpetual motion device. Around 1870, James Clerk Maxwell proposed a thought experiment in which a demon could open and close a gate between two chambers of gas, allowing warmer atoms to pass in one direction and cooler atoms to pass in the other. This sorting, which required no energy input, would result in a reduction of entropy in the system and a temperature difference between the two chambers that could be used as a heat pump to perform work, thus violating the second law.

"Later work has shown that the demon doesn't actually violate the second law and subsequently there have been many attempts to devise experimental systems that behave like the demon," said Weiss. "There have been some successes at very small scales, but we've created a system in which we can manipulate a large number of atoms, organizing them in a way that reduces the system's entropy, just like the demon."

The researchers use lasers to trap and cool atoms in a three-dimensional lattice with 125 positions arranged as a 5 by 5 by 5 cube. They then randomly fill about half of the positions in the lattice with atoms. By adjusting the polarization of the laser traps, the researchers can move atoms individually or in groups, reorganizing the randomly distributed atoms to fully fill either 5 by 5 by 2 or 4 by 4 by 3 subsets of the lattice.

"Because the atoms are cooled to almost as low a temperature as possible, the entropy of the system is almost entirely defined by the random configuration of the atoms within the lattice," said Weiss. "In systems where the atoms are not super-cooled, the vibration of the atoms makes up the majority of the system's entropy. In such a system, organizing the atoms does little to change the entropy, but in our experiment, we show that organizing the atoms lowers the entropy within the system by a factor of about 2.4."

###

In addition to Weiss, the research team at Penn State includes Aishwarya Kumar, Tsung-Yao Wu, and Felipe Giraldo Mejia. The research was funded by the U.S. National Science Foundation.

####

For more information, please click here

Contacts:
Sam Sholtis

814-865-1390

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Quantum Physics

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Quantum Computing

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project