Home > Press > World-first quantum computer simulation of chemical bonds using trapped ions: Quantum chemistry expected to be one of the first applications of full-scale quantum computers
![]() |
This is an artist's impression of lithium hydride molecule approaching its ground state energy. CREDIT Harald Ritsch/IQOQI Innsbruck |
Abstract:
An international group of researchers has achieved the world's first multi-qubit demonstration of a quantum chemistry calculation performed on a system of trapped ions, one of the leading hardware platforms in the race to develop a universal quantum computer.
The research, led by University of Sydney physicist Dr Cornelius Hempel, explores a promising pathway for developing effective ways to model chemical bonds and reactions using quantum computers. It is published today in the prestigious Physicial Review X of the American Physical Society.
"Even the largest supercomputers are struggling to model accurately anything but the most basic chemistry. Quantum computers simulating nature, however, unlock a whole new way of understanding matter. They will provide us with a new tool to solve problems in materials science, medicine and industrial chemistry using simulations."
With quantum computing still in its infancy, it remains unclear exactly what problems these devices will be most effective at solving, but most experts agree that quantum chemistry is going to be one of the first 'killer apps' of this emergent technology.
Quantum chemistry is the science of understanding the complicated bonds and reactions of molecules using quantum mechanics. The 'moving parts' of anything but the most-simple chemical processes are beyond the capacity of the biggest and fastest supercomputers.
By modelling and understanding these processes using quantum computers, scientists expect to unlock lower-energy pathways for chemical reactions, allowing the design of new catalysts. This will have huge implications for industries, such as the production of fertilisers.
Other possible applications include the development of organic solar cells and better batteries through improved materials and using new insights to design personalised medicines.
Working with colleagues at the Institute for Quantum Optics and Quantum Information in Innsbruck, Austria, Dr Hempel used just four qubits on a 20-qubit device to run algorithms to simulate the energy bonds of molecular hydrogen and lithium hydride.
These relatively simple molecules are chosen as they are well understood and can be simulated using classical computers. This allows scientists to check the results provided by the quantum computers under development.
Dr Hempel said: "This is an important stage of the development of this technology as it is allowing us to set benchmarks, look for errors and plan necessary improvements."
Instead of aiming for the most accurate or largest simulation to date, Dr Hempel's work focused on what can go wrong in a promising quantum-classical hybrid algorithm known as variational quantum eigensolver or VQE.
By looking at different ways to encode the chemistry problem, the researchers are after ways to suppress errors that arise in today's imperfect quantum computers and stand in the way of near-term usefulness of those machines.
Error suppression is at the core of research pursued in the University of Sydney's Quantum Control Laboratory, led by Professor Michael Biercuk, who recently launched Australia's first private quantum start-up, Q-CTRL. Dr Hempel, who did the experiments while at the University of Innsbruck, now hopes to leverage Sydney's expertise to improve what can be accomplished with these kinds of simulations.
The paper, published today in leading journal Physical Review X, was jointly written with Innsbruck Professor Rainer Blatt, a pioneer in quantum computing, and former Harvard professor Alán Aspuru-Guzik, who has since moved to the University of Toronto.
Professor Blatt, from IQOQI in Innsbruck, said: "Quantum chemistry is an example where the advantages of a quantum computer will very soon become apparent in practical applications."
Head of the University of Sydney Nano Institute's quantum science domain, Dr Ivan Kassal, said: "This work is a remarkable implementation of one of the most promising approaches to quantum chemistry, proving its mettle on a real quantum-information processor."
He said that Dr Hempel's decision to move to the University of Sydney in 2016 was an excellent addition to the strong quantum team on campus. "Theoretical chemistry and materials science are strengths at this university and they will be augmented by these latest techniques in quantum computation," he said.
####
For more information, please click here
Contacts:
Marcus Strom
61-423-982-485
Copyright © University of Sydney
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
Chemistry
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Physics
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Quantum Physics
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
Possible Futures
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Quantum Computing
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025
Programmable electron-induced color router array May 14th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Research partnerships
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Quantum nanoscience
Programmable electron-induced color router array May 14th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |