Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers identify cost-cutting option in treating nail fungus with nanotechnology: GW researcher Adam Friedman, M.D., studied the potential use of nitric oxide-releasing nanoparticles to improve onychomycosis treatment

Abstract:
Onychomycosis, a nail fungus that causes nail disfigurement, pain, and increased risk of soft tissue infection, impacts millions of people worldwide. There are several topical antifungal treatments currently available; however, treatment failure remains high due to a number of factors.

Researchers identify cost-cutting option in treating nail fungus with nanotechnology: GW researcher Adam Friedman, M.D., studied the potential use of nitric oxide-releasing nanoparticles to improve onychomycosis treatment

Washington, DC | Posted on July 11th, 2018

The most recent treatment, a broad spectrum triazole called efinaconazole, is designed to improve nail penetration. It boasts the highest cure rates among other topical antifungals, but the cost for a bottle is more than $600, and full treatment calls for multiple bottles.

Adam Friedman, MD, professor of dermatology at the George Washington University School of Medicine and Health Sciences, and his team investigated the use of nanotechnology to improve efinaconazole treatment and make it more cost effective. They observed that when nitric oxide-releasing nanoparticles are combined with the efinaconazole, it achieves the same antifungal effects, but at a fraction of the amount of the medication alone needed to impart the same effect.

"Nanotechnology is being studied and employed in many areas of medicine and surgery to better deliver established imaging and therapeutic agents to ultimately improve patient outcomes," said Friedman. "A quickly emerging roadblock in patient care is, unfortunately, access to medications due to rising cost and poor insurance coverage."

The study, published in the Journal of Drugs in Dermatology, found that, when combined, the nanoparticles and the medication are more effective than both alone, opening the door to potentially better and more tolerable treatment regimens. An additional benefit is the ability of nanoparticles to access infections in difficult to reach locations, as penetration and retaining activity across the nail plate is a common impediment for many antifungals.

"What we found was that we could impart the same antifungal activity at the highest concentrations tested of either alone by combining them at a fraction of these concentrations," Friedman explained. "The impact of this combo, which we visualized using electron microscopy as compared to either product alone, highlighted their synergistic damaging effects at concentrations that would be completely safe to human cells."

Given these results, the authors note that it is worth further researching the synergy of nitric oxide-releasing nanoparticles and efinaconazole against onychomycosis to determine the efficacy of the treatment in a clinical setting.

####

About George Washington University
Founded in 1824, the GW School of Medicine and Health Sciences (SMHS) was the first medical school in the nation's capital and is the 11th oldest in the country. Working together in our nation's capital, with integrity and resolve, the GW SMHS is committed to improving the health and well-being of our local, national and global communities. smhs.gwu.edu

For more information, please click here

Contacts:
Ashley Rizzardo

202-994-8679

Copyright © George Washington University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The study, titled "Nitric Oxide Releasing Nanoparticles as a Strategy to Improve Current Onychomycosis Treatments" is published in the Journal of Drugs in Dermatology at:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project