Home > Press > Scientists use photonic chip to make virtual movies of molecular motion
Yogesh Joglekar, Ph.D., Associate Professor of Physics, IUPUI is a theoretical physicist with interests in graphene, PT-waveguides, memristors, and mathematics. CREDIT School of Science, IUPUI |
Abstract:
Scientists from IUPUI, MIT, Nokia Bell Labs, NTT and the University of Bristol in England, which led the study, have shown how an optical chip can simulate the motion of atoms within molecules at the quantum level. The study is published in the May 31 issue of the journal Nature.
The work described in the new study could lead to new methods of molecular modeling, which may help in the creation of new chemicals for use as pharmaceuticals.
The new methods of simulation exploit a similarity between the vibrations of atoms in molecules and the way photons of light move in an optical chip. Using analogies between photonics and molecular vibrations as a starting point provided the researchers with a head start in implementing intriguing simulations. Building on this, they hope to create quantum simulation and modeling tools that provide a practical advantage in the coming years.
"With this platform, in addition to vibrations of a stand-alone molecule, we are able to model the effects of environment on these quantum vibrations," said study co-author and IUPUI physicist Yogesh Joglekar. "The chip allows us to study open quantum systems, an extremely challenging subject."
Understanding the behavior of molecules requires an understanding of how they vibrate at the quantum level. But modeling these dynamics requires massive computational power, beyond what exists or is expected from coming generations of supercomputers.
An optical chip uses light instead of electricity and can operate as a quantum computing circuit. In the study published in Nature, data from the chip allows a frame-by-frame reconstruction of atomic motions to create a virtual movie of how a molecule vibrates.
"We can think of the atoms in molecules as being connected by springs," said Bristol physicist Anthony Laing, who led the project. "Across the whole molecule, the connected atoms will collectively vibrate, like a complicated dance routine. At a quantum level, the energy of the dance goes up or down in well-defined levels, as if the beat of the music has moved up or down a notch. Each notch represents a quantum of vibration.
"We can program a photonic chip to mimic the vibrations of a molecule mapping its components to the structure of a particular molecule, say ammonia, and then simulate how a particular vibrational pattern evolves over some time interval. By taking many time intervals, we essentially build up a movie of the molecular dynamics."
Co-first author Chris Sparrow, who was a student on the project, noted the simulator's versatility: "The chip can be reprogrammed in a few seconds to simulate different molecules. Because time is a controllable parameter, we can immediately jump to the most interesting points of the movie, or play the simulation in slow motion. We can even rewind the simulation to understand the origins of a particular vibrational pattern."
The photonic chip used in the experiments was fabricated by NTT. "Part of this study was to demonstrate techniques that go beyond the standard harmonic approximation of molecular dynamics," Laing said. "We need to develop these methods to increase the real-world accuracy of our models."
###
Funding sources of all co-authors of "Simulating the vibrational quantum dynamics of molecules using photonics" are listed in the paper. IUPUI's Joglekar was supported by a National Science Foundation CAREER award.
####
For more information, please click here
Contacts:
Lauren Kay
317-274-9234
Copyright © INDIANA UNIVERSITY-PURDUE UNIVERSITY INDIANAPOLIS SCHOOL OF SCIENCE
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Imaging
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||